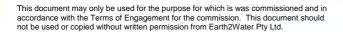


Kiama Municipal Council

Stage 2 Preliminary Contamination Assessment 104 Shoalhaven St, Kiama, NSW


Report E2W-0247 (DR001-V1)

30 July 2016

Prepared by: Dino Parisotto (Director)

BAppSc-Geology (Hons); MAppSc-Groundwater Phone: (02) 4234 0829 Fax: (02) 4236 1824 175 Fern St Gerringong NSW Australia 2534

175 Fern Street Gerringong NSW 2534 Phone: (02) 4234 0829 Fax: (02) 4236 1824

Client: Kiama Municipal Council

Project: Stage 2 Preliminary Contamination Assessment

104 Shoalhaven Street, Kiama, NSW, 2533

Prepared For: Mr Paul Czulowski Manning Street Kiama, NSW, 2533.

Preliminary Report: 30 July 2016

Ref: E2W-0247 DR002 (V1)

Soil Sampling @ 30 June 2016: Completed by D.Parisotto Laboratory Analyses: Completed by ALS Environmental Pty Ltd

Authorised: Earth2Water Pty Ltd

Dino Parisotto – Managing Director (BAppSc; Geology (Hons). MAppSc; Groundwater Management)

PH (02) 4234 0829 Fax 02 4236 1824 Office: 175 Fern Street, Gerringong, NSW, 2534.

Reports Distributed and Authorised for:

Kiama Council: pdf electronic copy

© Authorisation from Earth2Water Pty Ltd is required for third party use and distribution

EXCUTIVE SUMMARY

Earth2Water Pty Ltd (E2W) was engaged by Council to undertake a Stage 2 Preliminary Contamination Assessment (Stage 2) at the residential site located at 104 Sholahaven Street, Kiama, NSW (Figure 1). E2W understand the house is owned by Council and is planned for future development (or demolishing) as residential or potentially commercial (e.g. Lyon's Club House).

Stage 2 included excavation and sampling of 10 testpits (TP1-10), two soil hand auger bores (BH-1A, BH-2A), and collection of two targeted composite samples (Shed C-1, House C-1) around perimeter of buildings. The purpose of Stage 2 is to address Council requirements to identify risks, and development constraints associated with potentially contaminated land immediately adjacent to the neighbouring (contaminated) gas works site.

Based on the Stage 2 undertaken on 30 June 2016, the site conditions are as follows;

- The Site is mapped as being underlain by volcanic bedrock (Blow Hole Latite Member). Fill material was identified across at the site (0 ~0.5m depth) and comprised clay loam, coke ash/slag, blue metal, and some domestic construction materials (bricks, concrete).
- Two aged buildings (house and shed) are in poor condition and clad with fibro sheeting. A transpiration bed (80m2) and demolished two septic tanks are situated in the rear yard.
- No asbestos was detected in the 16 soil samples tested at the site.
- Analytical laboratory testing (TPH/BTEX, PAH, PCB, OCP, heavy metals, cyanide concentrations) indicates that the majority of soil results are reported below the NEPM (2013) health based guidelines for low density residential land use (i.e. HIL/HSL-A). Exception include, lead at one location (TP-6A= 403 mg/kg), which exceeds the NEPM (2013) HSL/HIL-A of 300 mg/kg.
- All soil analytical results are below the NEPM (2013) health based guidelines for commercial land use (NEPM 2013, HIL/HSL-D).
- The results of the composite samples are considered indicative only of the soil contamination status (each composite is formed by mixing four sub samples around perimeter of building). Composite samples (ShedC-1, HouseC-1) exceeded the NEPM (2013) HSL/HIL-A for lead (288 mg/kg, 370 mg/kg) based on the direct/adjusted guidelines (divided by 4). The composite (ShedC-1) exceeded NEPM (2013) HSL/HIL-A for cadmium (6 mg/kg), and zinc (6590 mg/kg) based on adjusted guidelines (divided by 4). The concentrations of TPH (C16-C34=370 & 230 mg/kg) in composite samples (i.e. ShedC-1, House C-1, & mix of 4 sub-samples each) exceeded the NEPM (2013) ESLs (300 mg/kg).
- Marginal exceedances of NEPM (2013) ecological screening levels (ESLs- low reliability guidelines for various land uses) are reported from four testing locations (BH-2A, TP-2A, TP-5A, TP-10A). The NEPM (2013) ESL exceedances for PAH/BaP are related to a course soil type only, and not fine grained soils (Note: clay loams and gravel present at the site). The marginal exceedances NEPM (2013, ESLs) for BaP are at locations within the front and rear yard (BH-2A, TP-2A, TP-5A, TP-10A).
- Due to the neighbouring gasworks site, age of the buildings (e.g. 1960-1970s), and visible coke ash in the back yard (surface near TP-1 & TP-2), E2W consider that potential risks to future sensitive residential land exists due to localised, patchy or buried gasworks waste within building footprints, fill and retaining walls.

Recommendations for Sensitive Land Use (residential)

- Excavation and offsite disposal of transpiration bed and materials comprising coke-ash, coal, slag from onsite soils to address actual/potential contamination risks associated with micro-biological hazards and gasworks related waste.
- Excavation, removal and appropriate disposal of septic tank structures.
- Excavation, removal of derelict pipework (PVC at transpiration bed, old galvanised water pipes).
- Excavation, removal and disposal of degraded soil fill (PAH/TPH/metals impact, demolition waste- concrete/bricks/metal). Covering, capping of the site (front/year yards) with clean top soil (~0.1m thick) to minimise potential exposure of contamination (gas works related waste).
- Further testing is recommended around the two buildings and location of composite samples to assessment the soil contamination status (i.e. 8 sample locations), and remedial requirements (as required).
- Stage 3 investigation is recommended if buildings are demolished. The soil testing would target the building foot print (data gap) and asbestos impact following removal of onsite structures. Validation sampling and or inspection is required for any remedial works (removal of transpiration beds, or impacted soil).

Recommendations for Commercial Land Use (e.g. Lyons Club House)

- Excavation, removal, offsite disposal of transpiration bed (80 m2) and surface materials comprising coke-ash, coal, slag from onsite soils to address risks associated with microbiological hazards and gasworks related waste.
- Excavation, removal and appropriate disposal of septic tank structures (concrete, bricks, and bio-sludge, i.e. micro-biological hazards).
- Soil capping or top soil cover for the site (front/rear yard) is recommended for commercial land use to mitigate any unexpected findings. Imported agricultural soil is recommended for the establishment of gardens.

A stage 3 investigation is recommended if buildings are demolished. The soil testing would target the building foot print (data gap) and also the potential for residual asbestos following removal of onsite structures. Further testing is recommended at the composite sample locations to assess the soil contamination status (i.e. 8 sample locations). Validation sampling and or inspection is required for any remedial works (removal of transpiration beds, or impacted soil).

TABLE OF CONTENTS

1.	Introduction										
2.	Object	ives & Background									
3.	Scope	Scope of Work6									
4.	Site In	Site Information									
5.	Quality	Quality Assurance /Quality Control									
6. 6.1		mination Assessment Guidelines									
7. 7.1 7.2	Investigation Results and Discussion										
8.	Conclu	asions and Recommendations									
FIGUR	RES & PI	LATES									
Figure Figure Figure	2	Site Location Site Plan and Soil Investigation Locations (30 June 2016) Site Layout & Impacted Areas (30 June 2016)									
Plates		1 to 9 (30 June 2016)									
TABL	ES										
Table 1 Table 2 Table 3		Soil Sampling Register (30 June 2016) Soil Analytical Results (30 June 2016) Soil Analytical Results –QA/QC (30 June 2016)									
APPE	NDICES	3									
Appendix A Appendix B Appendix C Appendix D		KMC Site Survey and Historical Aerial Pphotographs (1949, 1988, 2007) ALS Environmental – Final Laboratory Reports									
Appendix E Appendix F		ALS Environmental – Final Laboratory Reports Limitations									

1. INTRODUCTION

Earth2Water Pty Ltd (E2W) was engaged by Kiama Municipal Council (KMC) to undertake a Stage 2 Preliminary Contamination Assessment (Stage 2) at a vacant residential property located at 104 Sholahaven Street, Kiama, NSW (Site, Figures 1&2). E2W understand the house is owned by Council and is planned for future development (or demolishing) as residential or potentially commercial (e.g. Lyon's Club House).

The Stage 2 work included excavation and sampling of 10 testpits (TP1-10), two soil hand auger bores (BH-1A, BH-2A), and two targeted composite samples (Shed C-1, House C-1) around the buildings. Extensive contamination testing was undertaken by E2W (2007) in the neighbouring former gas works site to assess legacy soil and groundwater impact (Figures 1 and 2). The purpose of E2W's Stage 2 work is to address Council requirements to identify risks and development constraints associated with potentially contaminated land (e.g. legacy impacts associated with the neighbouring gas works site).

This report by E2W summarises the field and analytical testing results associated with Stage 2 site contamination assessment undertaken on 30 June 2016. Recommendations are included to address impacted soils (i.e. removal of transpiration bed, excavation/removal of septic tanks (2), removal of derelict pipe-work (transpiration beds, galvanised/corroded water pipes, PAH impacted soils and remnant gasworks waste- coke ash/slag etc). A Stage 3 investigation is recommended if the site buildings (shed, house) are decommissioned, to enable the adequate characterisation of the entire site and potential residual impacts following demolishing of buildings (e.g. asbestos).

2. OBJECTIVES AND BACKGROUND

Objectives of the stage 2 Preliminary Contamination Assessment are as follows:

- Assess the contamination status of the site.
- Assess risks associated with potential/actual contamination and address via environmental control measures or remediation (as required).

The former Kiama Gasworks is a known contaminated site (Appendix D). Coffey (2004) and E2W (2007) indicated that the gasworks site constitute a significant risk of harm due to the elevated contamination (TPH/BTEX/PAHs). The contamination identified at the former Kiama gasworks has not been remediated.

Coffey Geosciences Pty Ltd (Coffey) has completed a preliminary and subsequent Stage 2 environmental assessment of the former gasworks site. The works were undertaken in May 2003 and February 2004. E2W conducted extensive investigations at the former gasworks site, Cukuna Timber Yard, and the downgradient offsite area. The extent of soil and groundwater contamination associated with the former Kiama gasworks is presented in Appendix D (Figures 1 to 5 summarise the legacy of TPH/BTEX/PAH impact).

The residential property although adjacent to the former gasworks indicates a minor potential for impact (soil/water) due to its higher elevation (>2m) relative to the gasworks site (Plates 1 to 9,

Appendix D). Groundwater and seepage is downhill of the residential site and towards the gasworks site and former creek line. A rock wall (1-3m high) and dish drain captures any polluted seepage and flows on the southern boundary and way from the residential property.

The residential property and dwellings are in a dilapidated state (Plates 1-9). The site is currently vacant, and has generally been unused for several years.

3. SCOPE OF WORK

The scope of work undertaken by E2W is as follows:

- E2W inspected the site and potential test-pit locations in consultation with KMC (Paul Czulowski) on 21 April 2016 and 30 June 2016.
- Checking of services using diagrams and site inspection.
- Excavation of 10 shallow testpits (0.5 to 1.5m) using Council excavator (3 tonne, 0.5m wide bucket) guided by E2W (Dino Parisotto) on 30 June 2016. Testpits were excavated to natural ground or refusal on tree roots or bedrock.
- Testpits (10) were geologically logged and photographed. Soil samples were collected at various depths (0-0.1m, 0-0.2m, 0-0.3m, and ~0.5m-0.7m) using a stainless steel and decontaminated trowel. Soils were analysed for a selection of TPH/BTEX/PAHs/OCP, PCB, cyanide, pH, heavy metals and asbestos.
- Two soil hand auger bores (BH-1A, BH-2A) were excavated to approximately 0.3m depth to assess the contamination status in drive way and front yard.
- Two targeted composite samples (Shed C-1, House C-1) comprising four sub samples each were collected from around the two buildings. Samples were analysed for a broad range of analyses (TPH/BTEX/PAHs, heavy metals and asbestos) to provide an indication of contamination present around the perimeter of buildings.
- Additional PAH analyses (i.e. TP-2B, TP-5B, TP-10B) was undertaken following receipt of initial results to better characterise PAH impact below surface sample locations (TP-2A, TP-5A, TP-10A). Three samples (TP-6A TCLP=Pb, TP-10A TCLP=Pb, ShedC-1 TCLP=Pb &Zn) with elevated heavy metals were subjected to leachate analyses (TCLP), for waste classification and environmental assessment purposes.
- All samples were stored within insulated containers prior to being despatched under the standard E2W chain of custody procedures, to the analytical laboratory (ALS) in Sydney (NATA Accredited).
- A desk top assessment including a review of historical aerial photographs (1949, 1988, 2007), previous reports (E2W 2007), environmental maps, and obtaining a Section 149 certificate (2 &5) for the site.
- Preliminary Reporting, including data assessment and analyses of information collected from the site.

4. SITE INFORMATION

The residential site is approximately 462 m2 in area (14m by 33m), and identified as 104 Shoalhaven Street, Kiama, NSW (Figure 1). The site is currently vacant and maintained by Council. Details of the zoning and Lot and DP are outlined in the Section 149 certificate attached in Appendix A.

The site comprises a single storey small brick/fibro clad house and a separate garden shed (fibro construction) each with corrugated iron roofs. The buildings are dilapidated and estimated as 1960s-1970s constructions. A drive way exists (grass cover) on the southern boundary linking Shoalhaven Street and the garden shed. The front and rear garden are grass covered, with several large trees in the rear yard (south boundary, Plates 1 to 9). Services (power, water) have been disconnected from the site.

Based on discussion with council, two septic tanks were located in the rear yard and recently demolished and backfilled (early June 2016). A small brick wall exists (L-shaped) in the rear yard marking the location of the former transpiration bed (8m by 10m).

The site is surrounded by a mix of residential (west, north) and commercial/industrial properties (east, south). The site boundary is marked by fencing (timber, steel, chain wire) with entrance via Shoalhaven Street (Figure 1).

The street frontage is approximately 14m wide, and 33m deep. The shape of the site is rectangular and relatively level to sloping (to south) at the rear, and more steeply sloping (also to south) on the front yard (Figures 1 & 2). The south boundary is marked by (4 ft) chain wire fencing, a rock wall, sharp drop off (1 to 3 m), and a open narrow dish drain (flows to east) which runs parallel to west boundary. Residential properties and boundary fencing (6ft) exists on the north and west (rear) boundaries, whilst the front yard is unfenced.

The site is unlikely to contain any gasworks infrastructure. However, some evidence of gasworks by-products such as coke ash and siliceous slag were evident in the rear yard, transpiration beds and soil profile observed in the 10 test-pit excavations.

4.1 Neighbouring Gasworks Site History

The gasworks formerly occupied a larger footprint (>1,300m2) which included parts of Cukuna Timberyard (south) and the Council works depot (west). The former gasworks infrastructure, such as the original retort building still exist at the Cukuna Timber yard and used for storage of hardware materials.

The Kiama Gas Company works supplied gas to the municipality from about 1884 to mid 1960's. The gasworks produced gas from the carbonization of coal. Refer to appendix B for historical aerial photographs (1949, 1988, 2007) illustrating the extent of gasworks and isolation from the residential site.

In 1927, Kiama Municipal Council took over operations until its closure in 1960. Council records indicate that Council leased the site to several gas distribution companies from 1960 to recent times (early 2000?). In the 1960's the site was used to store and distribute LPG (Coffey, 2003).

A former creek line bisects the southern boundary of the site. The creek was covered and piped in the mid 1980's. Based on anecdotal evidence, tar occasionally overflowed from the tar well and settled into base of the old creek line. The location of the former creek line/currently piped drain is shown on Figures in Appendix D.

4.2 Geology/Hydrogeology

The Site is mapped as being underlain by volcanic bedrock (belonging to the Shoalhaven Group formation and the Permian aged Gerringong Volcanics- the Blow Hole Latite Member), which lies adjacent to Quaternary Alluvium (alluvium, gravel, sand) according to the Geological Series Sheet (1:50,000 9028-1, 1974). The Alluvium is interpreted to occur only on the former Gasworks site and not the residential site due to its higher elevation.

The bedrock at the site is weathered and also comprises silty-clay. Bedrock outcrop is evident along the southern boundary (rock wall) and was intersected in several test pits (<1.5m) excavated at the site. A wedge of alluvium (fine grained) is interpreted around the lower areas (offsite) around the former creek line, and adjoining gasworks and timber yard site (Figure 1).

A layer of fill (clay loam, gravel, silty clay) was encountered at the residential site. The filling and levelling of ground levels at the site (rear yard) is interpreted to occur during construction of the house and installation of the transpiration bed.

Groundwater was not encountered at the site, however localised and temporary water ingress was observed in one test-pit (TP-8, water level at 0.4mbgl) and likely to relate to the recent destruction/backfilling of a nearby septic tank.

The onsite geology produces a brown clay loam soil type with a sharp to diffuse contact with the underlying bedrock (0.5 to > 1 m depth).

5. QUALITY ASSURANCE /QUALITY CONTROL

As part of the soil and water sampling program, E2W implemented a field and laboratory quality control (QA/QC) program. The data quality objectives (as per NEPM 2013) are outlined in Appendix E. The following QA/QC measures were implemented for the offsite investigation (soil/groundwater sampling) at the Site:

- All work was undertaken by an experienced environmental scientist from Earth2Water Pty Ltd (Dino Parisotto) according to in-house site investigation procedures developed from NSW EPA and NEPM (2013) sampling protocols.
- All samples were collected by using decontaminated sampling equipment (trowels, bowls) and transferred into laboratory supplied sample containers.
- All samples were delivered to ALS Environmental Pty Ltd using E2W's chain of custody procedures.
- All samples were analysed by a NATA accredited laboratory (ALS Environmental Pty Ltd) within the required holding times for each analyses.
- One blind duplicate sample (TP4A/Dup-01) was collected to assess the precision and reliability of the laboratory testing and heterogeneity of the soil samples.
- An assessment of RPD (relative percent difference) was calculated between the primary and blind duplicate soil samples.
- The laboratory conducted QA/QC procedures according to NEPM 2013 protocols which included; NATA approval, detection limits, sample receipts forms, calibration and standards checks, method & analysis blanks, percent recovery results for surrogates, matrix spikes, and laboratory control duplicates. The final laboratory reports are attached in Appendix C.

In summary, E2W considers that the analytical data provided by ALS is acceptable for the purpose of the offsite soil assessment.

6. CONTAMINATION ASSESSMENT GUIDELINES

The 14 soil sampling locations (TP1-10, BH1A-BH2A, ShedC-1, House C-1, and 1 QA sample) investigated by E2W are considered adequate for the Stage 2 preliminary contamination assessment. The sampling locations (14) were based on the site area (462 m2) and based on NSW EPA guidelines (Sampling Design Guidelines, 1995. Note: A minimum of 5 sampling points is recommended for a 500 m2 parcel of land to detect an 11.8 m diameter hotspot with 95% accuracy). The sampling density (14 samples/462 m2) is considered to be sufficient, given the variability of soil at the site.

A summary of the relevant soil assessment criteria for the site are presented in Table 2, whilst laboratory reports are included in Appendix C. Exceedances are illustrated in Figure 3.

The following guidelines were utilised during the documentation, sampling design & reporting phases of this investigation:

- NSW EPA (1997), Guidelines for Consultants Reporting on Contaminated Sites
- NSW EPA (1998), Guidelines for the NSW Site Auditor Scheme
- NSW EPA (1995), Sampling Design Guidelines
- NSW DEC (2007), Guidelines for the Assessment and Management of Groundwater Contamination.

The proposed health based guidelines NEPM (2013, NEPM HSL-A & HIL-A) are founded on proposed future sensitive land uses scenarios (i.e. residential land use) given the surrounding residential development. It is noted that DECC Waste Classification Guidelines (2008) are appropriate for this assessment as soils/fill may be removed to remediate the site for sensitive land use (commercial land use requires minimal remedial works).

The analytical results have been evaluated against the following published guidelines:

Soil

- National Environment Protection (Assessment of Site Contamination) Measure (NEPM 2013), which outlines:
 - Health Investigation Levels (HILs) for metals and organic substances. The HILs are applicable for assessing human health risk via all relevant pathways of exposure. HIL "for residential land use was applied (current).
 - O Health Screening Levels (HSLs) for selected petroleum compounds and fractions. The HSLs are applicable when assessing human health risk via the inhalation and direct contact pathways. The HSLs depend on specific soil physicochemical properties, land use scenarios, and the characteristics of building structures. HSL health screening levels, 'A' (low density residential), soil type sand (this has been used instead of clay given the fill and transpiration bed/gravel materials). HSLs are also depth dependant (samples are 0<1m depth).</p>
 - o Management Limits are referenced when policy considerations/decisions are required which reflect the nature and properties of petroleum hydrocarbons (such as formation of observable light non-aqueous phase liquids (LNAPL), fire and

explosive hazards; and effects on buried infrastructure). When the management limits are exceeded, further site-specific assessment and management may enable any identified risk to be addressed.

- DECC (2008) Waste Classification Guidelines: Part 1: Classifying the Waste. Used to facilitate the future disposal of soils (NSW EPA approved landfill facility). Criteria for Asbestos is based on "no detectable" asbestos fibres.
- o NSW EPA (1994) Guidelines for Assessing Service Station Sites.
- O NSW EPA Protection of the Environment Operations (Waste) Regulation 2005: General Exemption Under Part 6, Clause 51 and 51A, The excavated natural material exemption 2012 (this guideline is for the beneficial offsite reuse of clean materials from the site for land applied fill). The parameters for this assessment have not been analysed for and requires formation of stockpiles after site infrastructure is removed).

The following summarises the chemicals of concern¹ for NEPM (2013) commercial land use guidelines (i.e. alternative to sensitive land use to minimise remedial costs);

- Commercial land use guidelines for total PAHs & BaP= 4,000 and 40 mg/kg, respectively (or 400 & 4 mg/kg for high density residential land use with minimal access to soil).
- Commercial land use guidelines for Lead = 1500 mg/kg (or 1200 mg/kg for high density residential land use).
- Commercial land use guidelines for TPH (C6-C10) and TPH (>C10-C16) = 680 & 500 mg/kg respectively (or TPHC6-C10, TPH >C10-C16 = 180 & 130 mg/kg, respectively for high density residential land use).

In summary, the commercial land use guidelines (NEPM-2013, HSL-D) and possibly high density residential (HSL/HIL-B for lead) reduces the risk and remedial requirements for the site. The remedial requirements are based on health (HSL) and ecological based (ESL²) risks to future land use scenarios. Import of agricultural soil/garden can be used to address risks (ESL) to local flora and fauna.

6.1 Contaminants & Areas of Concern

E2W refer to previous investigations conducted at the former Kiama Gasworks to identify the contaminants of concern and also the pollutants related to residential land use (e.g. transpiration beds, septic tanks, asbestos, imported fill).

Soil and groundwater at the offsite area surrounding the former gasworks site are contaminated with substances in such a way as to potentially present a significant risk of harm (Contaminated Land Management Act, 1997, Refer to Appendix D, and Figures 2, 3 and 5). The chemicals of concern ("the contaminants") include the following:

- Coal tar (dark heavy and odourous liquids often associated with coke ash/slag)
- PAHs (16 priority polycyclic aromatics, including BaP, and napthalene)
- TPH/BTEX (total petroleum hydrocarbons, benzene, toluene ethylbenzene, xylene) benzene which is a known carcinogen)
- Cyanide & Ammonia

Page 10 of 24

¹ Exceeding the NEPM (2013) guidelines for; ESL and HSL/HIL-A for low density residential

² Plant/environmental ecological health risks arise from existing soil status.

Based on the site inspection conducted by E2W and Council (30 June 2016), E2W interpret that some gasworks waste such as coke ash (as surplus fill) may have been historically disposed on the residential site. Some fragments of coke ash, coal and siliceous slag were observed in the rear yard during E2W site investigation. Based on E2W previous works conducted at Kiama Gasworks the coke ash is a common indicator of associated PAH impact.

7. INVESTIGATION RESULTS AND DISCUSSION

The results of testing at the 10 test-pits, 2 bores and 2 composite samples are presented in Tables 1 (soil sampling register) and 2, Figures 2 and 3. Quality control information for soil analyses is provided in Table 3 and Appendix C (QCI report). The analytical results from the site assessed in the following subsections.

7.1 Field Observations

The observations obtained from site inspections and testing (10 test-pits, 2 bores and 2 composite samples) are presented in Tables 1, Figure 2 and following subsections.

Soils were collected and analysed at the following depth intervals (when possible):

- Shallow: 0 to 0.1m, 0 to 0.2 m, or 0 to 0.3m
- Depth: approximately 0.5 to 0.7 m

Fill material from 0m to approximately 0.5m thickness (consisting of various proportions of clay loam, gravel, some coke ash/slag, concrete, bricks) was across the site. Insitu residual soils comprising brown clay loam/silty clay was encountered at several locations (TP-4,6,10). Refer to Plates 1-9.

Bedrock (brown siltstone) was encountered in two testpits (TP3 & 4) at approximately 0.5m depth, whilst bedrock outcrop is visible on the southern boundary.

E2W field observations based on the E2W investigations are as follows:

- Evidence of gross pollution was not observed at the site (e.g. soil discolouration, stressed or dead vegetation, odours, vapours, spoil). The site comprises extensive green grass cover, with exception of the south west corner (likely access route for mowers to the neighbouring council works depot). The site is mostly fenced, except for the eastern boundary.
- Some general domestic fill (debris- broken glass, paper, cans, flaking paint) was observed around the building. Some fragments of asbestos sheeting was noted in garden beds and linked to the dilapidated structures (shed and house). Indoor areas were not inspected.
- The flat area and low brick wall (L shaped) in the rear yard appears to mark the location of a transpiration bed (8m by 10m) and presence of gravels (coke ash, blue metal @0.5m thick) and associated PVC pipework. Some old galvanised water pipes were encountered during the pit excavations, as wells as demolition/domestic fill (brick/concrete) associated with breakup/backfill of septic tanks (2).

7.2 Analytical Results (Soil)

The samples selected for analytical testing are presented in Tables 1 & 2. Additional samples were analysed (i.e. TP-2B, TP-5B, TP-10B for PAHS) following receipt of initial results to better characterise the depth of PAH impact at locations with elevated results. The results of the composite samples (ShedC-1, HouseC-1) are considered indicative only of the soil contamination status (each composite is formed by mixing four sub samples around perimeter of building).

Three samples (TP-6A TCLP=Pb, TP-10A TCLP= Pb, ShedC-1 TCLP=Pb &Zn) were subjected to leachate analyses for waste classification and further environmental assessment purposes.

- No asbestos was detected in the 16 samples tested at the site.
- Analytical testing indicates that the majority of results are reported below the NEPM (2013) health based guidelines for low density residential land use (HILs/HSL). An exception includes, the lead concentrations at one location (TP-6A= 403 mg/kg), which exceeds the NEPM (2013) HSL/HIL-A of 300 mg/kg. The two composite samples (ShedC-1, HouseC-1) also exceeded the NEPM (2013) HSL/HIL-A for lead (288 mg/kg, 370 mg/kg) based on adjusted guidelines (divided by 4). The composite (ShedC-1) also exceeded NEPM (2013) HSL/HIL-A for cadmium (6 mg/kg), and zinc (6590 mg/kg) based on adjusted guidelines (divided by 4). All soil analytical results are below the NEPM (2013) health based guidelines for **commercial land use** (HIL/HSL-D)
- Marginal exceedances of NEPM (2013) **ecological** screening levels (ESL's i.e. course soils BaP=0.7 mg/kg, but not fine soils BaP=1.4 mg/kg) are reported for BaP (PAH) at four test pit locations (BH-2A, TP-2A, TP-5A, TP-10A). The four locations are associated with both fill (coke ash) and natural soils (clay loams). Concentrations of BaP ranged from 0.9 mg/kg to 1.3 mg/kg. Leachate (TCLP) results for sample (TP-2A) are reported below detection limits (BaP= 1.3 mg/kg and TCLP=< 1 ug/L) indicating low leachability and risks to the aquatic environment³.
- The concentrations of TPH (C16-C34=370 & 230 mg/kg) in composite samples (i.e. ShedC-1, House C-1, & mix of 4 sub-samples each) exceeded the NEPM (2013) ESLs (300 mg/kg). Further assessment of TPH concentrations is required to assess elevated TPH/PAH/metal concentrations around the buildings (i.e. collection of individual samples, Figure 2).

The soil at the site is classified as general solid waste, as per the DECC (2008) Waste Classification Guidelines (*Note: further waste classification is recommended during Stage 3 to ensure that hotspots (e.g. Pb, Ni etc) around the shed/house are addressed and sufficient statistical assessment is conducted*). The waste classification takes into consideration the results of TCLP analyses for heavy metals and PAHS (Pb, BaP) to enable assessment of waste using both total and leachable concentrations as outlined in Table 1 & Table of the guidelines.

The nature and extent of TPH/PAH concentrations detected at the site indicate some likely impact from gasworks related pollution. The presence of coke ash/slag in the rear yard and through the fill (approximately 0.5m depth) indicates potential for localised hotspots. The PAH concentrations marginally exceed the conservative (low reliability) NEPM (2013) ESL guidelines indicating potential risks to ecological health (local flora and fauna).

_

³ Ecological issues can be mitigated by importing top soil and agricultural soils (garden beds) to the site.

8. CONCLUSIONS AND RECOMMENDATIONS

Based on the Stage 2 preliminary contamination assessment undertaken at the site on 30 June 2016, E2W offer the following conclusions;

- The Site is mapped as being underlain by volcanic bedrock (belonging to the Shoalhaven Group formation and the Permian aged Gerringong Volcanics- the Blow Hole Latite Member. Fill material was identified across at the site (shallow soil to ~0.5m depth) and comprised clay loam, coke ash/slag, blue metal, and some domestic construction materials (bricks, concrete).
- The site comprises out dated waste water facilities which are no longer appropriate for the site (e.g. transpiration bed and two septic tanks). The two existing buildings (house and shed) are in poor condition and clad with fibro sheeting. Demolition works (buildings) should be followed by a Stage 3 assessment to assess asbestos impacts, and to check underneath the building footprints (data gaps).
- All soil analytical results are below the NEPM (2013) health based guidelines for commercial land use (NEPM 2013, HIL/HSL-D).
- No asbestos was detected in the 16 soil samples tested at the site.
- Analytical testing (TPH/BTEX, PAH, PCB, OCP, heavy metals, cyanide concentrations) indicates that the majority of results are reported below the NEPM (2013) health based guidelines for low density residential land use (HILs/HSL). Exception includes, lead concentrations at one location (TP-6A= 403 mg/kg), which exceeds the NEPM (2013) HSL/HIL-A of 300 mg/kg.
- Results of composite samples (2) are considered indicative only of the soil contamination status (each composite is formed by mixing four sub samples around perimeter of building). Discrete sampling is required for the individual samples provided for composite samples. The two composite samples (ShedC-1, HouseC-1) exceeded the NEPM (2013) HSL/HIL-A guidelines for lead (288 mg/kg, 370 mg/kg, guidelines divided by 4). The composite (ShedC-1) exceeded NEPM (2013) HSL/HIL-A for cadmium (6 mg/kg), and zinc (6590 mg/kg) based on adjusted guidelines (divided by 4). The TPH (C16-C34=370 & 230 mg/kg) concentrations in ShedC-1, House C-1 (4 sub-samples each) also exceeded the NEPM (2013) ESLs of 300 mg/kg. Further testing is required to assess the soil contamination status around the buildings (collection of individual samples).
- Several marginal exceedances of the NEPM (2013) ecological screening levels (ESLs-low reliability guidelines) are reported from four testing locations (BH-2A, TP-2A, TP-5A, TP-10A). Exceedances for PAH/BaP were for course soil type only, and not for fine grained soils. Marginal exceedances NEPM (2013, ESLs) for BaP are reported at locations within front and rear yard (BH-2A, TP-2A, TP-5A, TP-10A). Concentrations of BaP ranged from 0.9 mg/kg to 1.3 mg/kg, whilst TCLP for TP-2A are below detection limits (BaP= 1.3 mg/kg, TCLP=< 1 ug/L) indicating low leachability and general solid waste classification (DEC, 2008).
- The former gasworks site is located downhill and south of the site and associated with known contamination. The chemicals of concern ("contaminants") at the former include: Coal tar (dark heavy and odorous liquids often associated with coke ash/slag), PAHs (16 priority polycyclic aromatics), TPH/BTEX (total petroleum hydrocarbons, benzene, toluene ethylbenzene, xylene) benzene which is a known carcinogen), Cyanide, and Ammonia (water). Due to the proximity of the former gasworks site to the residential site, and visible presence of coke ash in the back yard (area of TP-1 & TP-2), E2W consider that some risk to future residential land exists due to potentially localised and buried gasworks waste (e.g. buried under structures, within fill and retaining walls). The house was built during

1960/1970s with potential of fill materials coming from the active gasworks site (surplus coke ash and tar etc).

Recommendations for Sensitive Land Use (residential)

Based on the site inspection, analytical results and also aesthetic issues (relevant for sensitive and low density residential land use) the following recommendations are offered:

- Excavation, removal and offsite disposal of transpiration bed and materials comprising coke-ash, coal, slag from onsite soils to address actual/potential contamination risks associated with micro-biological hazards and gasworks related waste.
- Excavation, removal and appropriate disposal of septic tank structures.
- Excavation, removal of old/derelict pipework (PVC at transpiration bed, old water pipes etc).
- Excavation, removal and disposal of degraded fill (PAH/TPH/metals impact and or demolition waste- concrete/bricks/metal). Covering, capping of the site (front/year yards) with clean top soil (~0.1m thick) to minimise potential exposure of contamination (gas works related waste).
- A stage 3 investigation is recommended if buildings are demolished. The soil testing would target the building foot print (data gap) and also the potential for residual asbestos following removal of onsite structures. Further testing is recommended around the two buildings and location of composite samples to provide a more specific assessment of the soil contamination status (i.e. 8 sample locations), and remedial requirements (as required).

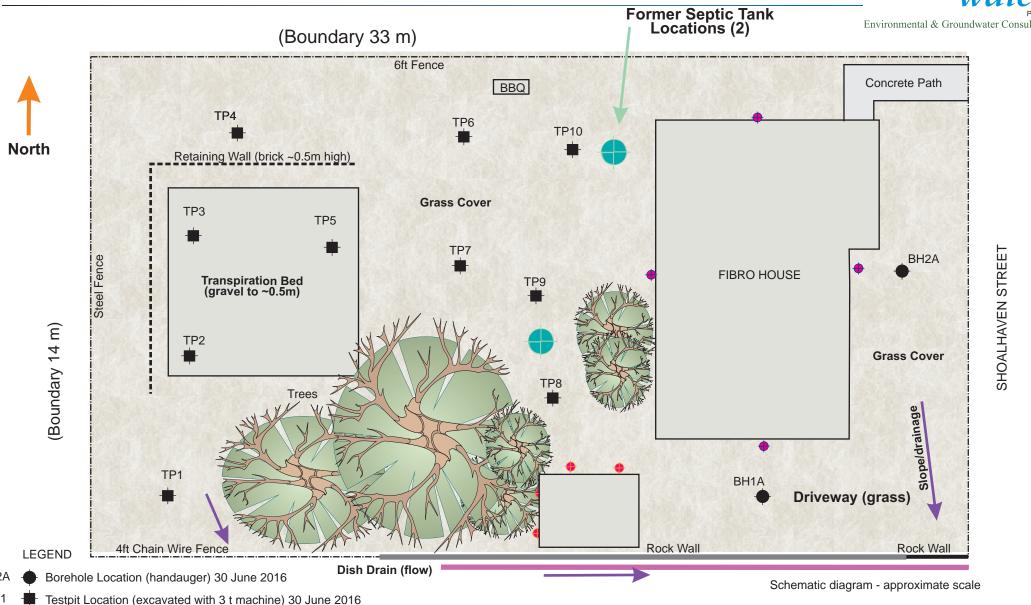
Capping of the degraded fill is not recommended for a proposed sensitive residential land use which may involve future soil disturbance and home grown produce.

Recommendations for Commercial Land Use (e.g. Lyons Club House)

Based on the site observations and analytical results the following recommendations are offered for commercial land use:

- Excavation, removal and offsite disposal of transpiration bed (80 m2) and surface materials comprising coke-ash, coal, slag from onsite soils to address risks associated with microbiological hazards and gasworks related waste.
- Excavation, removal nd appropriate disposal of septic tank structures (concrete, bricks, and bio-sludge, i.e. micro-biological hazards).
- Soil capping or top soil cover for the site (front/rear yard) is recommended for commercial land use. Imported agricultural soil is recommended for the establishment of gardens.

A stage 3 investigation is recommended if buildings are demolished. The soil testing would target the building foot print (data gap) and also the potential for residual asbestos following removal of onsite structures. Further testing is recommended at the composite sample locations to assess the soil contamination status (i.e. 8 sample locations).


Figures & Plates

Approximate Scale **Site Location**

Date: 4 July 2016 KMC - 104 SHOALHAVEN STREET, KIAMA, NSW Reference: E2W_247_01.cdr

Site Plan & Soil Investigation Locations (30 June 2016)

KMC - 104 SHOALHAVEN STREET, KIAMA, NSW Date: 4 July 2016

Composite House Sample (4 sub, Brown Loam 0-0.05m)

Composite Shed C-1 (4 sub, Brown Loam 0-0.05m)

House C-1

Shed C-1

Reference: E2W_247_02.cdr

Septic Tank Locations (2)- Excavate & Backfill with VENM

(Boundary 33 m) 6ft Fence Concrete Path BBQ House C-1 TP6 TP4 **TP10** North Retaining Wall (brick ~0.5m high) FIBRO HOUSE (When demolished- Site inspection **Grass Cover** & testing required) TP3 **TP5 House C-1** TP7 **House C-1** Steel Fence Transpiration Bed Excavate & Backfill with VENM TP9 (Boundary 14 m) **Grass Cover** Trees House C-1 Shed C-1 TP1 BH1A **Driveway (grass)** 4ft Chain Wire Fence Rock Wall Rock Wall **LEGEND** Dish Drain (flow) FIBRO SHED (When demolished- Site inspection & testing required) Test Locations 30 June 2016 Schematic diagram - approximate scale

Site Layout & Impacted Areas (30 June 2016)

(former Kiama Gasworks - south of site)

Note: Composite sample results around house & shed are indicative only of impact (4 sub samples)

-further sampling required Date: 4 July 2016

Impacted Areas (proposed remedial works; residential)

TP6

Figure 3 Reference: E2W 247 02.cdr

KMC - 104 SHOALHAVEN STREET, KIAMA, NSW

SHOALHAVEN STREET

Plate 1 (30 June 2016) View of rear yard at 104 Shoalhaven Street, Kiama. The retaining wall marks the area of the former transpiration bed. Several testpits (TP-2 & 3 and 5) are visible at the centre of the frame and location of transpiration bed. **Plate 2** showing the aged fibro and brick constructed house and front yard. **Plate 3** viewing east over the side driveway and location of BH-1 (next to yellow bin). **Plate 4** showing the rock wall and stormwater drain on the southern boundary. **Plate 5** showing the fibro garden shed located on the rear yard and south boundary.

KMC Environmental Assessment-104 Shoalhaven Street, Kiama (1 of 2)

Plates 6,7,&8 (30 June 2016) View of selected test pits (TP-1,4,5) and soil sample types located in the year yard (clay loam overlying coke ash and blue metal gravel to approximately 0.5m depth, underlain by weathered siltstone or silty clay). TP-04 located on the elevated northwest boundary of the site comprises clay loam and silty clay (no coke ash or gravel as its outside of the transpiration bed of approximately 80 m2).

Plate 9 (30 June 2016) Sample location (BH-2) located on the front garden and thick grass cover. Soil comprises clay loam overlying stiff brown silty clay.

Tables

Table 1 - Soil Sampling Register (Residential; 104 Shoalhaven St, Kiama) 30 June 2016

Test & Sample ID	Date	Sample ID & Depth (mbgl)	Sample Description	Laboratory Analyses
BH-1A	30 June 2016	BH-1A 0-0.2m	Grass cover, middle of drive way next to house 0-0.2m: (FILL?) Clay Loam – medium brown, stiff, moist, plastic, uniform, no odour	ALS: 1
BH-2A	30 June 2016	BH-2A 0-0.2m	Grass cover, front yard in front of house 0-0.2m: (FILL?) Clay Loam – medium brown, stiff, moist, plastic, uniform, no odour	ALS: 2 & TCLP-PAH
TP-1	30 June 2016	TP-1A 0-0.3m TP-1B 0.4-0.5m	Grass cover- south west corner of yard (former transpiration bed) 0-0.4m: FILL (Clay Loam & Gravel) – medium brown & grey, transpiration bed comprising dark grey coke ash gravel and blue metal, loose-firm, no odour. 0.4- 0.5 m: Silty Clay – medium brown, stiff, uniform, moist, no odour	ALS: 1 ALS: 6
TP-2	30 June 2016	TP-2A 0-0.3m TP-2B 0.5-0.6m	Grass cover- south west corner of yard (former transpiration bed) 0-0.5m: FILL (Clay Loam & Gravel) – medium brown & grey, transpiration bed comprising dark grey coke ash gravel and blue metal, loose-firm, no odour. 0.5- 0.6 m: FILL (Silty Clay & gravel) – medium brown, stiff, minor coke ash gravel, moist, no odour	ALS:1 ALS:3& 6
TP-3	30 June 2016	TP-3A 0-0.3m	Grass cover- rear west end of yard (former transpiration bed) 0-0.5m: FILL (Clay Loam & Gravel) – medium brown & grey, transpiration bed comprising dark grey coke ash gravel and blue metal, loose-firm, no odour. 0.5- 0.6 m: Silty Clay/Siltstone bedrock – medium brown, stiff, uniform, moist, no odour (refusal on rock)	ALS: 2
TP-4	30 June 2016	TP4A 0-0.3m/ DUP-01 TP-4B 0.5-0.6m	Grass cover- north west corner of yard 0-0.6m: Clay Loam & Silty Clay— medium brown, stiff, moist, plastic, uniform, no odour Weathered brown siltstone at 0.5m depth	ALS: 1
TP-5	30 June 2016	TP-5A 0-0.3m TP-5B 0.5m	Grass cover- middle section of yard (former transpiration bed) 0-0.5m: FILL (Clay Loam & Gravel) – medium brown & grey, transpiration bed comprising dark grey coke ash gravel and blue metal, loose-firm, no odour. 0.5- 0.6 m: Silty Clay – medium brown, stiff, uniform, moist, no odour	ALS: 1
TP-6	30 June 2016	TP-6A 0-0.3m	Grass cover- middle section of yard 0-0.5m: Clay Loam & Silty Clay— medium brown, stiff, moist, plastic, uniform, no odour Weathered brown siltstone at 0.5m depth	ALS: 2 & TCLP-Pb

TP-7	30 June 2016	TP-7A 0-0.3m	Grass cover- middle section of yard 0-0.5m: Clay Loam & Silty Clay (fill?) – medium brown, stiff, moist, plastic, uniform, no odour (metal galvanised pipe)	ALS: 6
TP-8	30 June 2016	TP-8A 0-0.3m TP-8B 0.5m	Grass cover- middle section of yard (former septic tank area) 0-0.6m: FILL (Clay Loam & Gravel) – medium brown & grey, some concrete boulders/slabs & gravel, some bricks and coke ash, loose-firm, no odour. Water ingress to approx 0.4m bgl	ALS: 2 ALS: 3
TP-9	30 June 2016	TP-9A 0-0.3m	Grass cover- middle section of yard 0-0.5m: FILL (Clay Loam & Gravel) – medium brown & grey, some concrete boulders/slabs & gravel, some scrap metal (pipe), tree roots, loose-firm, no odour. 0.5- 0.6 m: Silty Clay & Weathered Siltstone – medium brown, stiff, uniform, moist, no odour	ALS: 4
TP-10	30 June 2016	TP-10A 0-0.3m TP-10B 0.5-0.7m	Grass cover- north east corner of yard, near house 0-0.6m: Clay Loam & Silty Clay— medium brown, stiff, moist, plastic, uniform, no odour	ALS: 1 ALS: 6
Shed-C1	30 June 2016	0-0.1m Composite of 4 sub samples	Shallow Soils collected from around garden shed 0-0.1m: FILL (Loam) – medium brown, trace of fine gravel, organic matter (leaf litter, grass roots) some debris (glass, plaster), loose, no odour	ALS: 1 TCLP-Pb &Zn
House C-1	30 June 2016	0-0.1m Composite of 4 sub samples	Shallow Soils collected from around house 0-0.1m: FILL (Loam) – medium brown, trace of fine gravel, organic matter (leaf litter, grass roots) some debris (gravels, glass, plaster), loose, no odour	ALS: 1

Notes:

• Samples collected by Earth2Water Pty Ltd on 30 June 2016 by using trowel or hand auger from testpits, or borehole.

■ Laboratory analyses (ALS): 1 = TPH/BTEX/PAH/8 metals/cyanide & asbestos 2= TPH/BTEX/PAH/8 metals/OCP/PCB/asbestos 3= TPH/BTEX 4=PAHs & Asbestos 5=TCLP analyses (metals or PAH) 6=PAH

■ NA= Not Analysed

Table 2 - Soil Analytical Results (Kiama, 30 June 2016)

Analyte Moisture Content (dried @ 103°C)			Classification		Manageme	ESLs^^	Guidelines	BH-1A	BH-2A	TP-1A	TP-1B	TP-2A	TP-2B	TP-3A	TP-4A
				(A)	nt Limits^		(1994)	30/06/2016	30/06/2016	30/06/2016	30/06/2016	30/06/2016	30/06/2016	30/06/2016	30/06/2016
						Samp	ole Depth (m)	0-0.2m	0-0.2m	0-0.3m	0.4-0.5m	0-0.3m	0.5-0.6m	0-0.3m	0-0.3m
1	%	1						18.3	26.1	27.7	22.9	29.9	11.8	27.4	23.8
Asbestos	-/	0.4	NIAI					NI-	NI-	NI-	NI-	NI-		NI-	NI=
Asbestos Detected Asbestos Type	g/kg	0.1	NA'					No ND	No ND	No ND	No ND	No ND		No ND	No ND
•		0.1								fill- clay &	fill- clay &		fill- clay &	fill- clay &	
Description	-	-						fill- clay loam	fill- clay loam	gravel	gravel	fill- clay loam	gravel	gravel	clay loam
Total Metals										gravor	gravor		giavoi	gravor	
Arsenic	mg/kg	5	100	100				<5	<5	5		<5		<5	<5
Cadmium	mg/kg	1	20	20				<1	4	<1		<1		<1	<1
Chromium (total)	mg/kg	2		100 (VI)				17	12	14		9		11	19
Copper	mg/kg	5	100	7000				54	61	86		83		62	54
			100 (1500.												
Lead	mg/kg	5	TCLP<5 mg/L)	300				66	110	19		62		50	68
Nickel	mg/kg	2	40	3000				4	5	9		6		5	4
Zinc	mg/kg	5		8000				155	1210	83		217		186	414
Mercury	mg/kg	0.1	4	200				<0.1	<0.1	<0.1		0.2		<0.1	<0.1
Total Cyanide	mg/kg	1		250				<1	<1	<1		<1			<1
Total Polychlorinated biphenyls	mg/kg	0.1		1	1									<0.1	
Organochlorine Pesticides (OCP)	m = A.	0.05		-	1									-0.05	
Heptachlor Aldrin	mg/kg mg/kg			/										<0.05 <0.05	
Dieldrin	mg/kg		1	7	-									<0.05	
Endrin	mg/kg			10										<0.05	
Endosulfan (sum)	mg/kg			300										<0.05	
cis-Chlordane	mg/kg	0.05		50										< 0.05	
4.4`-DDE	mg/kg	0.05												< 0.05	
4.4`-DDT	mg/kg	0.2		260										< 0.2	
4.4`-DDD	mg/kg	0.05												< 0.05	
Sum of DDD + DDE + DDT	mg/kg													< 0.05	
Sum of Aldrin + Dieldrin	mg/kg	0.05												<0.05	
Polynuclear Aromatic Hydrocarbo	ne														
Naphthalene	mg/kg	0.5						<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	mg/kg	0.5						<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	mg/kg	0.5						< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	mg/kg	0.5						< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	mg/kg							0.5	0.6	0.6	<0.5	1.6	< 0.5	0.7	<0.5
Anthracene	mg/kg							<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	mg/kg	0.5						1.1	1.2	1.2	<0.5	2.8	< 0.5	1.2	<0.5
Pyrene	mg/kg	0.5						1	1.1	1.2	<0.5	2.7	<0.5	1.1	<0.5
Benz(a)anthracene	mg/kg	0.5						0.7	0.8	0.6	<0.5	1.5	<0.5	0.6	<0.5
Chrysene Banza(h)fluoranthana	mg/kg	0.5						0.6	0.7 1.1	0.5	<0.5 <0.5	1.4 1.6	<0.5 <0.5	<0.5 <0.5	<0.5
Benzo(b)fluoranthene Benzo(k)fluoranthene	mg/kg mg/kg	0.5						<0.5	<0.5	0.6 <0.5	<0.5	0.6	<0.5	<0.5	<0.5 <0.5
DOI 20(K) III OTATILI ETIE	mg/kg	0.5	0.8					\U. U	\U. U.U	\U.0	\0.0	0.0	₹0.0	\U.U	\U. U.
		1	(10,TCLP<0.04									1.3			
Benzo(a)pyrene	mg/kg	0.5	mg/L)	3	<u> </u>	0.7 & 1.4#	1	0.7	0.9	0.5	<0.5	(TCLP=<1 ug/L)	<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	mg/kg	0.5						<0.5	0.5	<0.5	<0.5	0.6	<0.5	<0.5	<0.5
Dibenz(a.h)anthracene	mg/kg	0.5						<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g.h.i)perylene	mg/kg	0.5						<0.5	0.6	<0.5	<0.5	0.8	<0.5	<0.5	<0.5
BaP TEF (half LOR)	mg/kg	0.5	-	3				1.2	1.4	0.9	0.6	2	0.6	0.6	0.6
Correct DALL		0.5	200	200			20	F 4	7.5		ND	14.9	ND	2.0	ND
Sum of PAH BTEX	mg/kg	0.5	200	300	1	1	20	5.4	7.5	5.2	ND	(TCLP=<0.5 ug/L)	ND	3.6	ND
Benzene	mg/kg	0.2	10	1		50	1	<0.2	<0.2	<0.2		<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	0.2	288	1500	 	85	130	<0.5	<0.2	<0.2		<0.2	<0.5	<0.2	<0.2
Ethylbenzene	mg/kg	0.5	600	390		70	50	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	mg/kg	0.5													
ortho-Xylene	mg/kg	0.5	1000	260		105	25	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5
BTEXN	., .,														
Sum of BTEX	mg/kg	0.2						<0.2	<0.2	<0.2	-	<0.2	<0.2	<0.2	<0.2
Total Xylenes	mg/kg	0.5						< 0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5
Naphthalene	mg/kg	1		0.9				<1	<1	<1		<1	<1	<1	<1
Total Recoverable Hydrocarbons		10	1					<10	<10	<10		<10	<10	<10	<10
C6 - C10 Fraction	mg/kg						1	<10	<10	<10					<10
C6 - C10 Fraction C6 - C10 Fraction minus BTEX (F1) mg/kg	10	650	210	700	180						<10	<10	<10	
C6 - C10 Fraction C6 - C10 Fraction minus BTEX (F1 >C10 - C16 Fraction	mg/kg mg/kg	10 50	650	210 160	1000	120		<50	<50	<50		<50	<50	<50	<50
C6 - C10 Fraction C6 - C10 Fraction minus BTEX (F1 >C10 - C16 Fraction >C16 - C34 Fraction	mg/kg mg/kg mg/kg	10 50 100	650		1000 2500	120 300		<50 <100	<50 <100	<50 <100		<50 180	<50 110	<50 <100	<50 <100
C6 - C10 Fraction C6 - C10 Fraction minus BTEX (F1 >C10 - C16 Fraction	mg/kg mg/kg	10 50 100 100	650 10000		1000	120		<50	<50	<50		<50	<50	<50	<50

NOTES:

#guidelines divided (4) as four sub samples collected in composite samples (Shed C-1, House C-1)- indicative only of contamination status

NCFBM 2013 Health-based Investigation Levels - HIL A Residential (Low Density) Sand, 0-1m

*NEPM 2013 Management Limits for TPH fractions F1-F4 in soil - low density Residential (Low Density) Sand, 0-1m

*NEPM 2013 Management Limits for TPH fractions F1-F4 in soil - low density Residential (Low Density) Sand, 0-1m

*NEPM 2013 Management Limits for TPH (Fractions F1-F4 in soil - low density Residential (Low Density) Sand, 0-1m

*NEPM 2013 Management Limits for TPH (Fractions F1-F4 in soil - low density Residential (Low Density) Sand, 0-1m

*NEPM 2013 Ecological Screening Level (ESLs) for TPH fractions F1-F4, BTEX and benzo(a)pyrene in soil - Urban residential, coarse soil type (fine soil type has higher guidelines)

BaP TEF (half LOR)= sum of carcinogenic PAHs (using half LOR for calculation)

NEPM (2013) ESL = low reliability for variable land uses .Urban residential and public open space. Guidelines (BaP) =0.7 mg/kg course soil, 1.4 mg/kg for fine soil

Table 2 - Soil Analytical Results (Kiama, 30 June 2016)

Analyte	Units	LOR	DECC 2008 - Waste Classification		NEPM 2013 Manageme nt Limits^	NEPM 2013 ESLs^^	NSW EPA Guidelines (1994)	TP-5A	TP-5B	TP-6A	TP-7A	TP-8A	TP-8B	TP-9A	TP-10A	TP-10B	SHED C-1	HOUSE C-1
			Classification	(A)	III LIIIIIS"			30/06/2016	30/06/2016	30/06/2016	30/06/2016	30/06/2016	30/06/2016	30/06/2016	30/06/2016	30/06/2016	30/06/2016	30/06/2016
				1	ı	Samp	le Depth (m)	0-0.3m	0.5m	0-0.3m	0-0.3m	0-0.3m	0.5m	0-0.3m	0-0.3m	0.5-0.7m	0-0.1m	0-0.1m
Moisture Content (dried @ 103°C)	%	1						36.2	27.1	25.7	22.5	28.8	34.4	24.3	25.8	26	47.7	28.5
Asbestos Asbestos Detectod	a/ka	0.1	NA'					No		No	No	No		No	No		No	No
Asbestos Detected Asbestos Type	g/kg 	0.1	INA					ND		ND	ND	ND ND		ND	ND ND		ND	ND ND
	1	0.1						fill- clay &			fill- clay &	fill- clay &		fill- clay &				
Description	-	-						gravel	clay loam	fill- clay & gravel	gravel	gravel	clay loam	gravel	fill- clay & gravel	clay loam	loam	loam
Total Metals								••			•			•				
Arsenic	mg/kg	5	100	100				<5		7		<5			11		<5	6
Cadmium	mg/kg	1	20	20				<1		<1		<1			<1		6	<1
Chromium (total)	mg/kg	2	400	100 (VI)				8		13		10			17		110	25
Copper	mg/kg	5	100	7000				81		61		60			87		277 288	95
Lead	mg/kg	5	100 (1500, TCLP<5 mg/L)	300				64		403 (TCLP=<0.1 mg/L)		82			240 (TCLP=<0.1 mg/L)		(TCLP=<0.1 mg/L)	370
Nickel	mg/kg	2	40	3000				5		7		6			10		21	10
Zinc	ma/k=	5		8000				249		374		269			844		6590 (TCLP=20.7	1840
Mercury	mg/kg mg/kg	0.1	4	200				0.2		0.6		0.1			0.1		0.2	0.1
Total Cyanide	mg/kg	1	4	250				2		0.6		0.1			2		0.2	0.1
Total Polychlorinated biphenyls	mg/kg	0.1		1						<0.1		<0.1						
Organochlorine Pesticides (OCP)												.5						
Heptachlor	mg/kg	0.05		7						< 0.05		< 0.05						
Aldrin	mg/kg	0.05		7						< 0.05		< 0.05						
Dieldrin	mg/kg	0.05								<0.05		< 0.05						
Endrin	mg/kg	0.05		10						<0.05		<0.05						
Endosulfan (sum)	mg/kg	0.05		300						<0.05		<0.05						
cis-Chlordane	mg/kg	0.05		50						<0.05		<0.05						
4.4`-DDE 4.4`-DDT	mg/kg mg/kg	0.05		260						<0.05 <0.2		<0.05 <0.2						
4.4`-DDD	mg/kg	0.05		200						<0.05		< 0.05						
Sum of DDD + DDE + DDT	mg/kg	0.05								<0.05		<0.05						
Sum of Aldrin + Dieldrin	mg/kg									< 0.05		< 0.05						
Polynuclear Aromatic Hydrocarbon	ns																	
Naphthalene	mg/kg	0.5						<0.5	<0.5	<0.5	< 0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	mg/kg	0.5						<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	mg/kg	0.5						<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5		<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
Fluorene Phenanthrene	mg/kg mg/kg	0.5						<0.5 1	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5 0.8	<0.5	<0.5	<0.5
Anthracene	mg/kg	0.5						<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	mg/kg	0.5						1.8	<0.5	0.6	0.7	0.7		0.6	1.6	<0.5	0.9	0.8
Pyrene	mg/kg	0.5						1.8	<0.5	0.6	0.7	0.6		0.6	1.5	<0.5	0.9	0.8
Benz(a)anthracene	mg/kg	0.5						1.1	< 0.5	< 0.5	0.5	< 0.5		< 0.5	1	< 0.5	0.5	0.5
Chrysene	mg/kg	0.5						1	<0.5	<0.5	<0.5	<0.5		<0.5	0.9	<0.5	<0.5	<0.5
Benzo(b)fluoranthene	mg/kg	0.5						1.2	<0.5	0.6	0.7	<0.5		<0.5	1.4	<0.5	0.6	0.6
Benzo(k)fluoranthene	mg/kg	0.5	0.8 (10,TCLP<0.04					<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene	mg/kg	0.5	mg/L)	3		0.7 & 1.4#	1	1	<0.5	<0.5	0.6	<0.5		<0.5	1.1	<0.5	0.5	0.5
Indeno(1.2.3.cd)pyrene	mg/kg	0.5	~ /					<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	0.6	<0.5	<0.5	<0.5
Dibenz(a.h)anthracene	mg/kg	0.5						<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	< 0.5	<0.5
Benzo(g.h.i)perylene	mg/kg	0.5						0.6	<0.5	<0.5	<0.5	<0.5		<0.5	0.8	<0.5	<0.5	<0.5
BaP TEF (half LOR)	mg/kg	0.5		3				1.5	0.6	0.6	1	0.6		0.6	1.7	0.6	0.9	0.9
Sum of PAH BTEX	mg/kg	0.5	200	300			20	9.5	ND	1.8	3.2	1.3		1.2	10.2	ND	3.4	3.2
Benzene	mg/kg	0.2	10	1		50	1	<0.2	<0.2	<0.2		<0.2	<0.2		<0.2		<0.2	<0.2
Toluene	mg/kg	0.5	288	1500		85	130	<0.5	<0.5	<0.5		<0.5	<0.5		<0.5		<0.5	<0.5
Ethylbenzene	mg/kg	0.5	600	390		70	50	<0.5	<0.5	<0.5		<0.5	<0.5		<0.5		<0.5	<0.5
meta- & para-Xylene	mg/kg	0.5	1000	260		105	25	<0.5	<0.5	<0.5		<0.5	<0.5		<0.5		<0.5	<0.5
ortho-Xylene BTEXN	mg/kg	0.5															1	
Sum of BTEX	mg/kg	0.2						<0.2	<0.2	<0.2		<0.2	<0.2		<0.2		<0.2	<0.2
Total Xylenes	mg/kg	0.5						<0.5	<0.5	<0.5		<0.5	<0.5		<0.5		<0.5	<0.5
Naphthalene	mg/kg	1		0.9				<1	<1	<1		<1	<1		<1		<1	<1
Total Recoverable Hydrocarbons -	NEPM 2	013																
C6 - C10 Fraction	mg/kg	10						<10	<10	<10		<10	<10		<10		<10	<10
C6 - C10 Fraction minus BTEX (F1)	mg/kg	10	650	210	700	180		<10	<10	<10		<10	<10		<10		<10	<10
>C10 - C16 Fraction	mg/kg	50		160	1000	120		<50	<50	<50		<50	<50		<50		<50	<50
>C16 - C34 Fraction	mg/kg	100			2500	300		170	<100	<100		<100	<100		100		370	230
>C34 - C40 Fraction	mg/kg	100			10000	2800		100	<100	<100		<100	<100		<100		280	160
>C10 - C40 Fraction (sum)	mg/kg	50	10000	1	oub commi			270	<50	<50		<50	<50		100	l	650	390

NEPM (2013) ESL = low reliability for variable land uses .Urban residential and public open space. Guidelines (BaP) =0.7 m

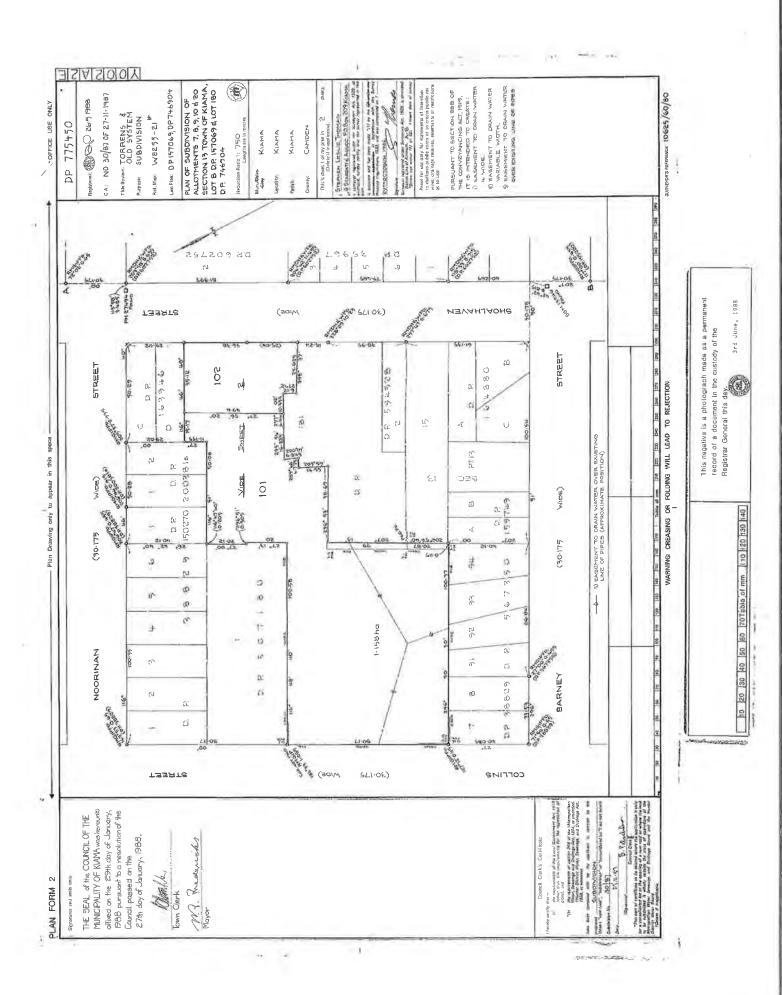
Table 3 - Soil Analytical Results- QA/QC (30 June 2016)

Analyte	Units	LOR	TP-4A	DUP-01 (BH4a)	RPD %	Comments	
,,			30/06/2016	30/06/2016			
		-	0-0.3m	00,00,00			
Moisture Content (dried @ 103°C)	%	1	23.8	22.2			
Asbestos	,,,						
Asbestos Detected	g/kg	0.1	No	No	0%	OK	
Asbestos Type		0.1	ND	ND	9,70		
Description	-	-	clay loam				
Total Metals							
Arsenic	mg/kg	5	<5	<5	0%	OK	
Cadmium	mg/kg	1	<1	1	NA	OK	
Chromium	mg/kg	2	19	14	30.3	OK	
Copper	mg/kg	5	54	55	1.8	OK	
Lead	mg/kg	5	68	94	32.1	OK	
Nickel	mg/kg	2	4	4	0%	OK	
Zinc	mg/kg	5	414	906	74.5	Over	
Mercury	mg/kg	0.1	<0.1	0.1	74.5 NA	OVE	
Total Cyanide	mg/kg	1	<0.1 <1	0.1 <1	0%	OK	
Total Gyaniue	my/kg	'	<u> </u>	<u> </u>	0 /0	- OK	
Polynuclear Aromatic Hydrocarbor						6	
Naphthalene	mg/kg	0.5	<0.5	<0.5	NA	OK	
Acenaphthylene	mg/kg	0.5	<0.5	<0.5	NA	OK	
Acenaphthene	mg/kg	0.5	<0.5	<0.5	NA	OK	
Fluorene	mg/kg	0.5	<0.5	<0.5	NA	OK	
Phenanthrene	mg/kg	0.5	<0.5	<0.5	NA	OK	
Anthracene	mg/kg	0.5	<0.5	<0.5 <0.5	NA NA	OK OK	
Fluoranthene	mg/kg	0.5	<0.5	<0.5 <0.5	NA NA	OK	
Pyrene Benz(a)anthracene	mg/kg mg/kg	0.5 0.5	<0.5 <0.5	<0.5 <0.5	NA NA	OK	
Chrysene	mg/kg	0.5	<0.5	<0.5	NA NA	OK	
Benzo(b)fluoranthene	mg/kg	0.5	<0.5	<0.5	NA NA	OK	
Benzo(k)fluoranthene	mg/kg	0.5	<0.5	<0.5	NA NA	OK	
Benzo(a)pyrene	mg/kg	0.5	<0.5	<0.5	NA	OK	
Indeno(1.2.3.cd)pyrene	mg/kg	0.5	<0.5	<0.5	NA	OK	
Dibenz(a.h)anthracene	mg/kg	0.5	<0.5	<0.5	NA	OK	
Benzo(g.h.i)perylene	mg/kg	0.5	<0.5	<0.5	NA	OK	
Sum of PAH	mg/kg	0.5	ND	ND	NA	OK	
BTEX Benzene	ma/k~	0.2	<0.2	<0.2	NA	OK	
Benzene Toluene	mg/kg	0.2	<0.2 <0.5	<0.2 <0.5	NA NA	OK	
Ethylbenzene	mg/kg mg/kg	0.5	<0.5 <0.5	<0.5 <0.5	NA NA	OK	
meta- & para-Xylene	mg/kg mg/kg	0.5					
ortho-Xylene	mg/kg	0.5	<0.5	<0.5	NA	OK	
BTEXN	my/ky	0.5				+	
Sum of BTEX	mg/kg	0.2	<0.2	<0.2	NA	OK	
Total Xylenes	mg/kg	0.2	<0.2	<0.2	NA NA	OK	
Naphthalene	mg/kg	1	<1	<1	NA NA	OK	
Total Recoverable Hydrocarbons -				<u> </u>	14/3	O.C	
C6 - C10 Fraction	mg/kg	10	<10	<10	NA	ОК	
C6 - C10 Fraction minus BTEX (F1)	mg/kg	10	<10	<10	NA NA	OK	
>C10 - C16 Fraction	mg/kg	50	<50	<50	NA NA	OK	
>C16 - C34 Fraction	mg/kg	100	<100	<100	NA NA	OK	
>C34 - C40 Fraction	mg/kg	100	<100	<100	NA	OK	
>C10 - C40 Fraction (sum)	mg/kg	50	<50	<50	NA	OK	

NOTES:

LOR = laboratory limits of reporting

NA = not available NT = not tested


ND = not detected

Appendix A-Section 149 Certificate

Appendix B-Site Survey & Historical Aerial Photographs

Aerial photo taken November 2003

Copyright LPI NSW 2005 Compiled by Kiama Council

Date: 20/03/07 Scale: 1:1000 This map is supplied by Council on condition that Council will not be responsible for any loss or damage which may result from any use made of the map as a result of any errors or omissions contained in the map. To establish title boundaries and ownership advice should be obtained from a surveyor, legal advisor or LPI New South Wales.

Aerial Photography is Copyright AAMHatch. AAMHatch bears no responsibility for the accuarcy of overlay data supplied.

Appendix C-ALS Environmental Final Laboratory Reports

Schraf 20 12 25 こととにから 0-P.O. NO.: E2W-247 KMC house (Gasworks) ite: KMC House Gworks JENT: Earth2Water Pty Ltd

OSTAL ADDRESS: PO Box 189 Jamberoo, NSW, 2533

END REPORT TO: Dino Parisotto

SEND INVOICE TO: Dino Parisotto ATA NEEDED BY: as stated AME : Dino Parisotto TP-2A -U asmar TP-IA P-2B 10-6A 10-6A 10-8A 10-8A 10-8A 1P-4A 1P-4B P-3A [P-10A SAMPLE (D TP- 10B Dur-o Jamberco SAMPLE DATA CHAIN OF CUSTODY DOCUMENTATION- EARTH2WATER PTY LTD QUOTE NO. 2016 soil; soil SOI 80 MATRIX COMMENTS/SPECIAL HANDLING/STORAGE OR DIPOSA Ratain samples for 3 weeks prior to disposal REPORT NEEDED BY: As per Hewatts direction 206.16 RELINQUISHED BY: DATE DATE ī TIME: 3.00 pare: TYPE & PRESERVATIVE 1 Jac + Jac Jartz Jartz 195 +2 Jan +2 Jac +2 det 2 to De _ TIME 2144 10/t2 art2 ALS Container · 7.2016 ĕ B SAMPLERS: Dino Parisotto PHONE: 0422 334102 QC LEVEL: REPORT FORMAT: HARD: Yes 8 E TO A. QCS1:□ Mes E-MAIL: earthh2o@tpg.com.au RECEIVED BY FAX:Yes QC82:[] QCS3 Yes DATE (/7//) BULLETIN BOARD: ANALYSIS REQUIRED Attach By PO / Internal Street: Relinquished By / Date: Organised By / Date:_ Libeon / Forward Lab / Spilly Connote / Courier:_ Lab / Analysis: ALS_ Me worth ****O** Mo:____ ALS Environmental Smithfield, NSW 6 cyanide (total) 5 OCP/8 metals/asbestor 4 TPH/BTEX 3 asbestos 2 TPH/BTEX/PAHs,8 metals, cyanide, asbestos 1 TPH/BTEX/PAHs, 8 metals/OCP/PCBs, asbestos 7. PAKS & Asbestes acs4:□ 4 day turnaround please Laboratory Analyses E-MAIL: YES Telephone: + 61-2-8784 8555 Sydney Work Order Reference ES1614401

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : ES1614401

Client : EARTH2WATER PTY LTD

Contact : MR DINO PARISOTTO

Address : PO BOX 189

JAMBEROO NSW, AUSTRALIA 2533

Telephone : +61 4236 1334

Project : ----

Order number : E2W-247

C-O-C number · ----

Sampler : DINO PARISOTTO
Site : KMC HOUSE GWORKS

Quote number : ---
No. of samples received : 21

No. of samples analysed : 19

Page : 1 of 19

Laboratory : Environmental Division Sydney

Contact :

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61-2-8784 8555

Date Samples Received : 01-Jul-2016 12:45

Date Analysis Commenced : 04-Jul-2016

Issue Date : 08-Jul-2016 17:22

NATA Accredited Laboratory 825
Accredited for compliance with
ISO/IEC 17025.

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Descriptive Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics, Smithfield, NSW Celine Conceicao Senior Spectroscopist Sydney Inorganics, Smithfield, NSW

Christopher Owler Team Leader - Asbestos Newcastle - Asbestos, Mayfield West, NSW Pabi Subba Senior Organic Chemist Sydney Organics, Smithfield, NSW RICHARD TEA Lab technician Sydney Inorganics, Smithfield, NSW

Shaun Spooner Asbestos Identifier Newcastle - Asbestos, Mayfield West, NSW

Page : 2 of 19 Work Order : ES1614401

Client : EARTH2WATER PTY LTD

Project : ---

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

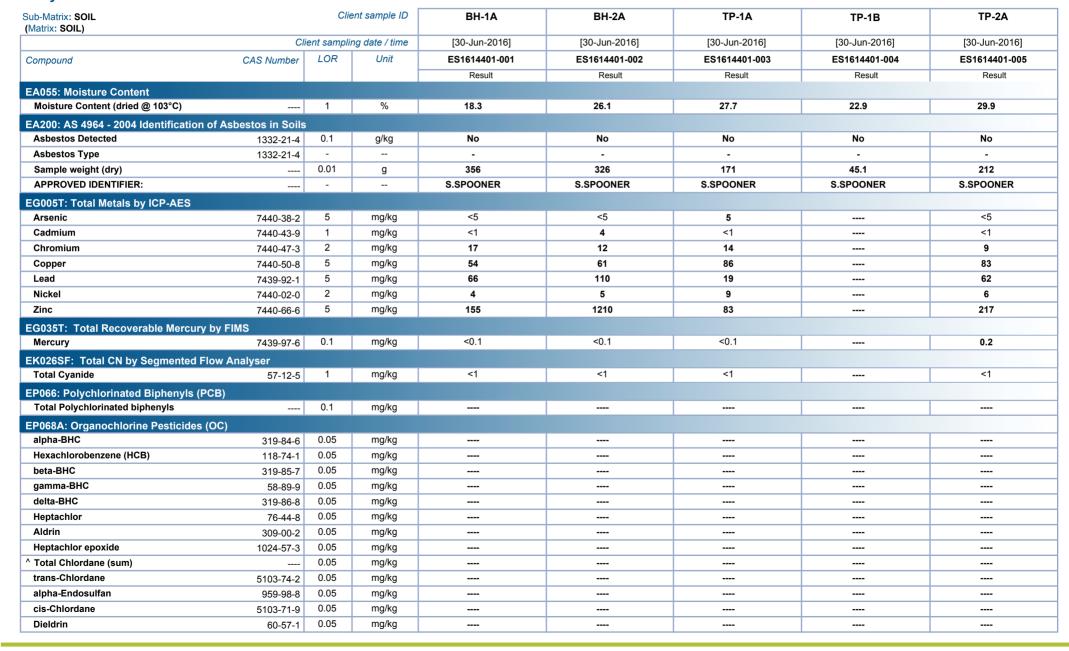
Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

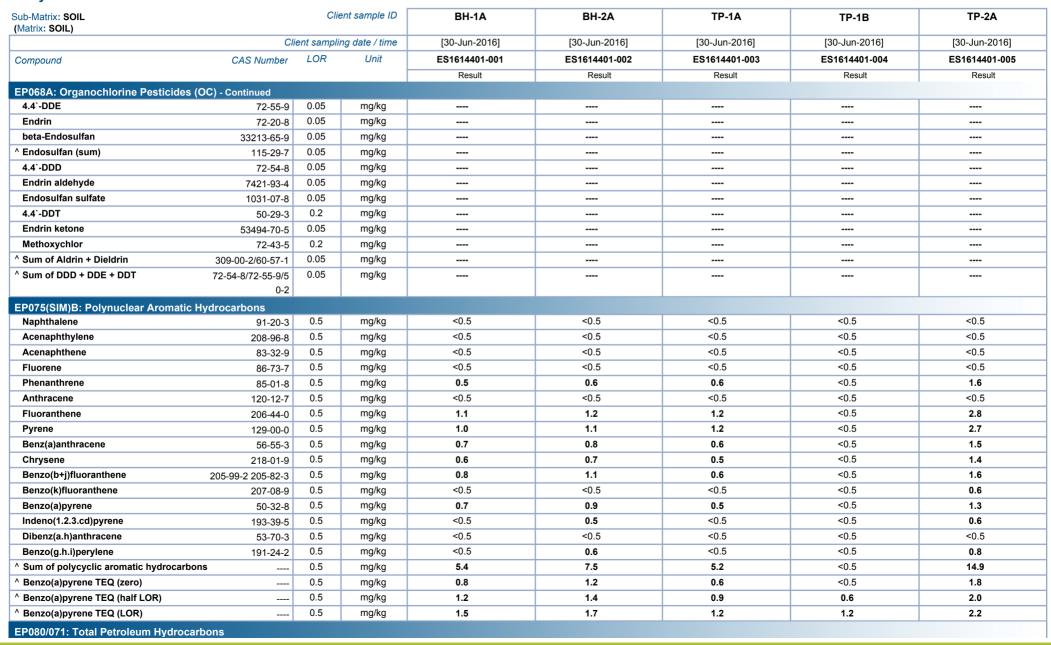
LOR = Limit of reporting


- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EA200 'Am' Amosite (brown asbestos)
- EA200 'Cr' Crocidolite (blue asbestos)
- EA200 'Trace' Asbestos fibres ("Free Fibres") detected by trace analysis per AS4964. The result can be interpreted that the sample contains detectable 'respirable' asbestos fibres
- EA200: Asbestos Identification Samples were analysed by Polarised Light Microscopy including dispersion staining.
- EA200 Legend
- EA200 'Ch' Chrysotile (white asbestos)
- EA200: 'UMF' Unknown Mineral Fibres. "-" indicates fibres detected may or may not be asbestos fibres. Confirmation by alternative techniques is recommended.
- EA200: Negative results for vinyl tiles should be confirmed by an independent analytical technique.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EA200: For samples larger than 30g, the <2mm fraction may be sub-sampled prior to trace analysis as outlined in ISO23909:2008(E) Sect 6.3.2-2

Page : 3 of 19 Work Order : ES1614401

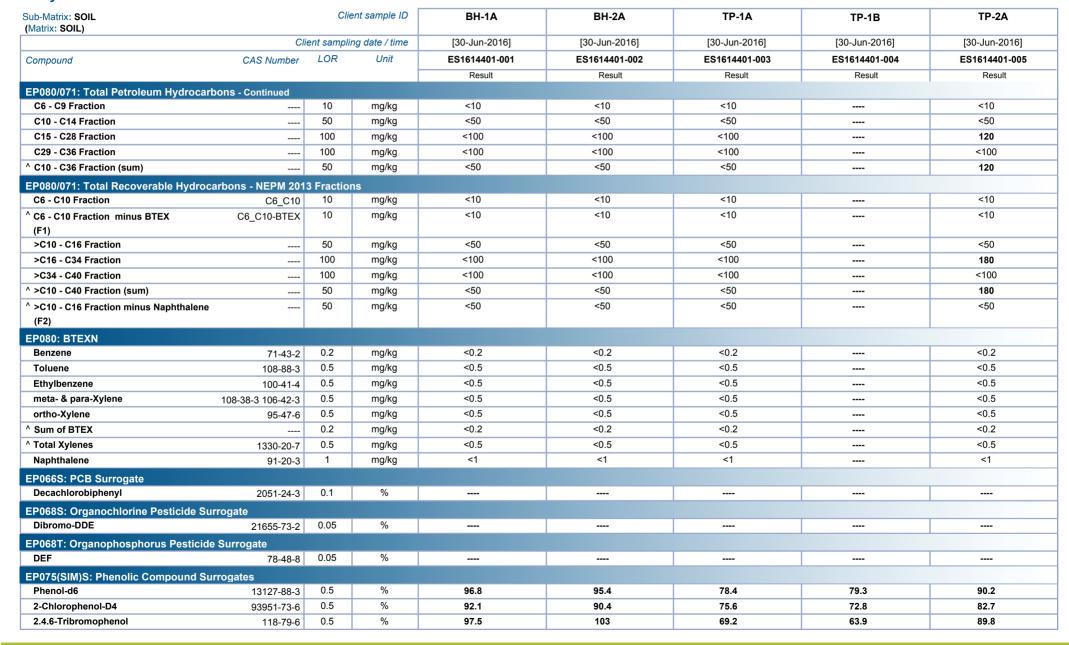
Client : EARTH2WATER PTY LTD

Project : ---



Page : 4 of 19
Work Order : ES1614401

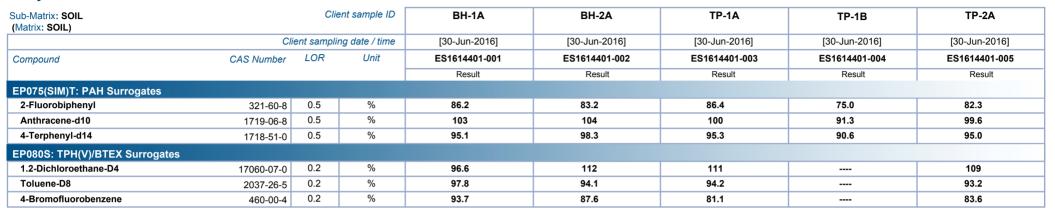
Client : EARTH2WATER PTY LTD


Project : ---

Page : 5 of 19 Work Order : ES1614401

Client : EARTH2WATER PTY LTD

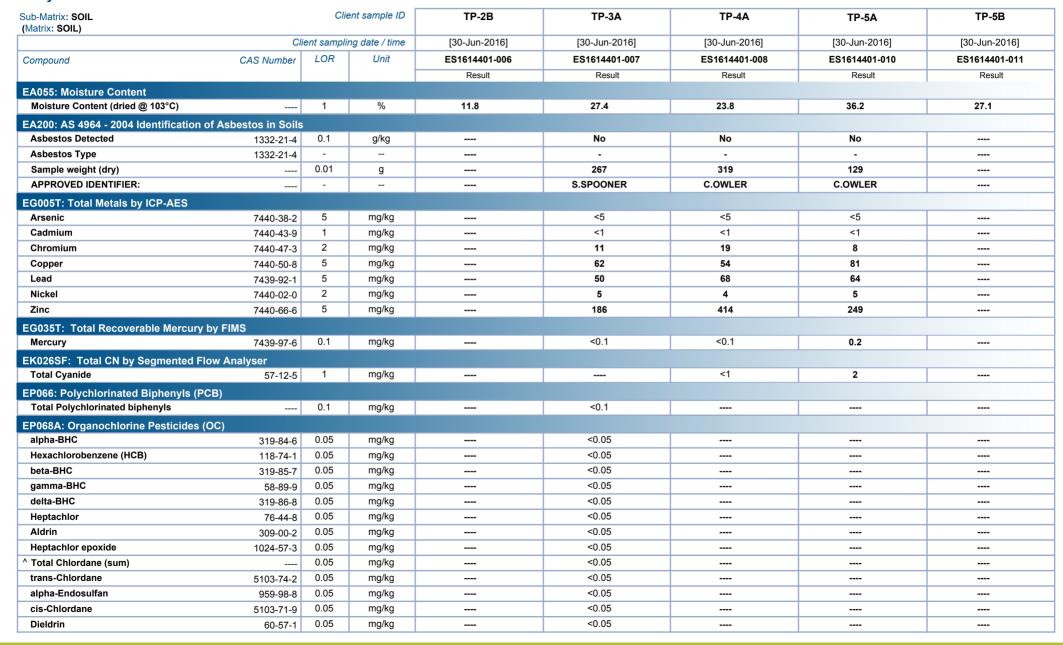
Project : ---



Page : 6 of 19 Work Order : ES1614401

Client : EARTH2WATER PTY LTD

Project : ---



Page : 7 of 19
Work Order : ES1614401

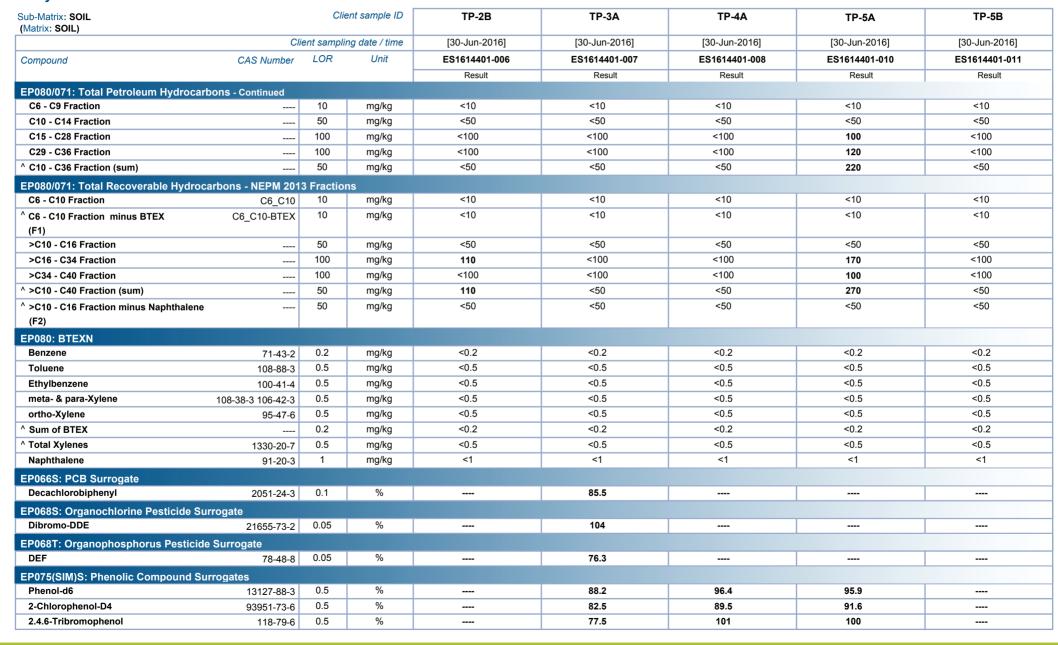
Client : EARTH2WATER PTY LTD

Project : ---



Page : 8 of 19
Work Order : ES1614401

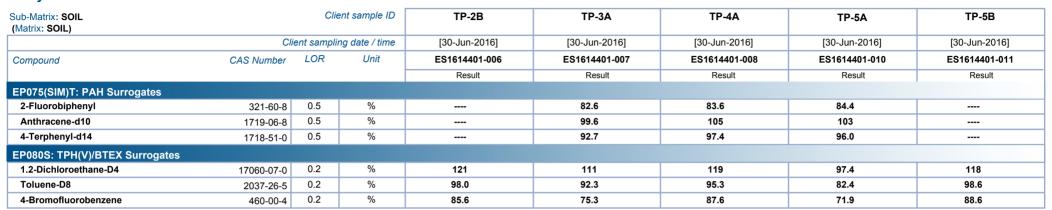
Client : EARTH2WATER PTY LTD


Project : ---

Page : 9 of 19 Work Order : ES1614401

Client : EARTH2WATER PTY LTD

Project : ---



Page : 10 of 19 Work Order : ES1614401

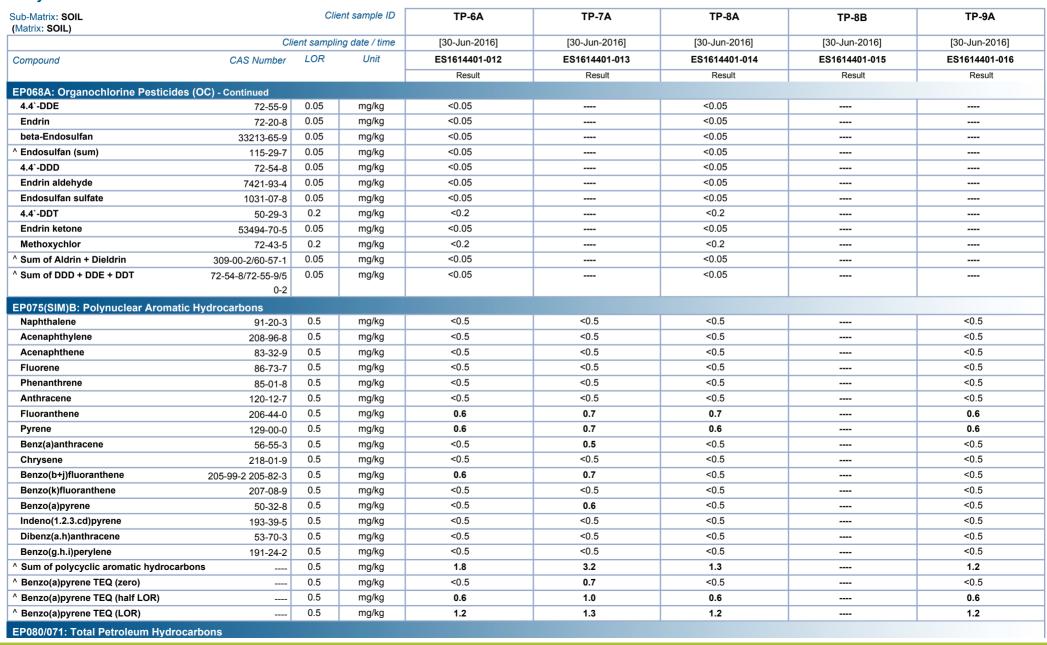
Client : EARTH2WATER PTY LTD

Project : ---

Page : 11 of 19 Work Order : ES1614401

Client : EARTH2WATER PTY LTD

Project : ---



Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP-6A	TP-7A	TP-8A	TP-8B	TP-9A
	Cli	ient samplii	ng date / time	[30-Jun-2016]	[30-Jun-2016]	[30-Jun-2016]	[30-Jun-2016]	[30-Jun-2016]
Compound	CAS Number	LOR	Unit	ES1614401-012	ES1614401-013	ES1614401-014	ES1614401-015	ES1614401-016
•				Result	Result	Result	Result	Result
A055: Moisture Content								
Moisture Content (dried @ 103°C)		1	%	25.7	22.5	28.8	34.4	24.3
A200: AS 4964 - 2004 Identification o	f Asbestos in Soils							
Asbestos Detected	1332-21-4	0.1	g/kg	No	No	No		No
Asbestos Type	1332-21-4	-		-	-	-		-
Sample weight (dry)		0.01	g	192	197	158		234
APPROVED IDENTIFIER:		-		S.SPOONER	S.SPOONER	S.SPOONER		S.SPOONER
G005T: Total Metals by ICP-AES								
Arsenic	7440-38-2	5	mg/kg	7		<5		
Cadmium	7440-43-9	1	mg/kg	<1		<1		
Chromium	7440-47-3	2	mg/kg	13		10		
Copper	7440-50-8	5	mg/kg	61		60		
Lead	7439-92-1	5	mg/kg	403		82		
Nickel	7440-02-0	2	mg/kg	7		6		
Zinc	7440-66-6	5	mg/kg	374		269		
G035T: Total Recoverable Mercury b	ov FIMS							
Mercury	7439-97-6	0.1	mg/kg	0.6		0.1		
K026SF: Total CN by Segmented Flo								
Total Cyanide	57-12-5	1	mg/kg					
P066: Polychlorinated Biphenyls (PC			0 0					
Total Polychlorinated biphenyls		0.1	mg/kg	<0.1		<0.1		
		V	g/g	V.		V.		
P068A: Organochlorine Pesticides (Calpha-BHC		0.05	mg/kg	<0.05		<0.05		
Hexachlorobenzene (HCB)	319-84-6 118-74-1	0.05	mg/kg	<0.05		<0.05		
beta-BHC	319-85-7	0.05	mg/kg	<0.05		<0.05		
gamma-BHC	58-89-9	0.05	mg/kg	<0.05		<0.05		
delta-BHC	319-86-8	0.05	mg/kg	<0.05		<0.05		
Heptachlor	76-44-8	0.05	mg/kg	<0.05		<0.05		
Aldrin	309-00-2	0.05	mg/kg	<0.05		<0.05		
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05		<0.05		
Total Chlordane (sum)	1024-31-3	0.05	mg/kg	<0.05		<0.05		
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05		<0.05		
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05		<0.05		
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05		<0.05		
Dieldrin	60-57-1	0.05	mg/kg	<0.05		<0.05		
Digidi III	00-37-1	0.00	mg/kg	~0.00		10.00		

Page : 12 of 19
Work Order : ES1614401

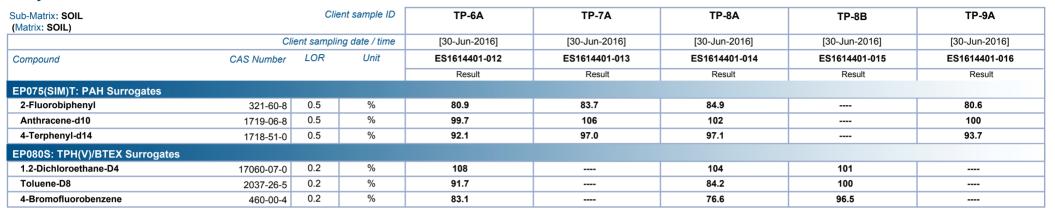
Client : EARTH2WATER PTY LTD

Project : ---

Page : 13 of 19 Work Order : ES1614401

Client : EARTH2WATER PTY LTD

Project : ---



Page : 14 of 19 Work Order : ES1614401

Client : EARTH2WATER PTY LTD

Project : ---

Page : 15 of 19 Work Order : ES1614401

Client : EARTH2WATER PTY LTD

Project : ---

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP-10A	DUP-01	SHED C-1	HOUSE C-1	
	Cli	ient samplii	ng date / time	[30-Jun-2016]	[30-Jun-2016]	[30-Jun-2016]	[30-Jun-2016]	
Compound	CAS Number	LOR	Unit	ES1614401-017	ES1614401-019	ES1614401-020	ES1614401-021	
•				Result	Result	Result	Result	
A055: Moisture Content								
Moisture Content (dried @ 103°C)		1	%	25.8	22.2	47.7	28.5	
A200: AS 4964 - 2004 Identification	of Asbestos in Soils							
Asbestos Detected	1332-21-4	0.1	g/kg	No	No	No	No	
Asbestos Type	1332-21-4	-		-	-	-	-	
Sample weight (dry)		0.01	g	182	246	92.5	213	
APPROVED IDENTIFIER:		-		S.SPOONER	S.SPOONER	C.OWLER	C.OWLER	
G005T: Total Metals by ICP-AES								
Arsenic	7440-38-2	5	mg/kg	11	<5	<5	6	
Cadmium	7440-43-9	1	mg/kg	<1	1	6	<1	
Chromium	7440-47-3	2	mg/kg	17	14	110	25	
Copper	7440-50-8	5	mg/kg	87	55	277	95	
Lead	7439-92-1	5	mg/kg	240	94	288	370	
Nickel	7440-02-0	2	mg/kg	10	4	21	10	
Zinc	7440-66-6	5	mg/kg	844	906	6590	1840	
G035T: Total Recoverable Mercury	by FIMS	1						
Mercury	7439-97-6	0.1	mg/kg	0.1	0.1	0.2	0.1	
K026SF: Total CN by Segmented Fl	low Analyser							
Total Cyanide	57-12-5	1	mg/kg	2	<1			
P066: Polychlorinated Biphenyls (P								
Total Polychlorinated biphenyls		0.1	mg/kg					
P068A: Organochlorine Pesticides ((OC)							
alpha-BHC	319-84-6	0.05	mg/kg					
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg					
beta-BHC	319-85-7	0.05	mg/kg					
gamma-BHC	58-89-9	0.05	mg/kg					
delta-BHC	319-86-8	0.05	mg/kg					
Heptachlor	76-44-8	0.05	mg/kg					
Aldrin	309-00-2	0.05	mg/kg					
Heptachlor epoxide	1024-57-3	0.05	mg/kg					
Total Chlordane (sum)		0.05	mg/kg					
trans-Chlordane	5103-74-2	0.05	mg/kg					
alpha-Endosulfan	959-98-8	0.05	mg/kg					
cis-Chlordane	5103-71-9	0.05	mg/kg					
Dieldrin	60-57-1	0.05	mg/kg					

Page : 16 of 19 Work Order ES1614401

Client EARTH2WATER PTY LTD

Project

Page : 17 of 19 Work Order · ES1614401

Client : EARTH2WATER PTY LTD

Project

Phenol-d6

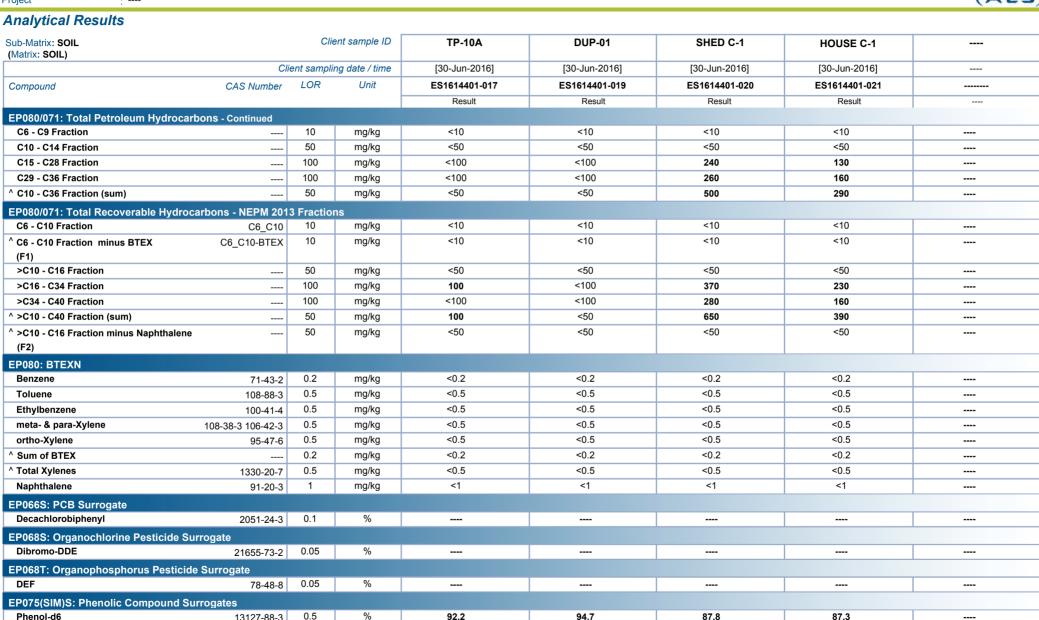
2-Chlorophenol-D4

2.4.6-Tribromophenol

13127-88-3

93951-73-6

118-79-6


0.5

0.5

0.5

%

%

94.7

88.9

95.8

87.8

82.1

86.4

87.3

81.0

83.2

92.2

86.7

93.7

Page : 18 of 19 Work Order : ES1614401

Client : EARTH2WATER PTY LTD

Project : ---

Analytical Results

Sub-Matrix: SOIL		Clie	ent sample ID	TP-10A	DUP-01	SHED C-1	HOUSE C-1	
(Matrix: SOIL)								
	Cli	ent sampli	ng date / time	[30-Jun-2016]	[30-Jun-2016]	[30-Jun-2016]	[30-Jun-2016]	
Compound	CAS Number	LOR	Unit	ES1614401-017	ES1614401-019	ES1614401-020	ES1614401-021	
				Result	Result	Result	Result	
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	80.8	83.7	81.1	79.0	
Anthracene-d10	1719-06-8	0.5	%	101	101	92.9	89.8	
4-Terphenyl-d14	1718-51-0	0.5	%	93.5	95.7	80.4	79.0	
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	116	116	90.9	96.2	
Toluene-D8	2037-26-5	0.2	%	95.6	100	102	84.5	
4-Bromofluorobenzene	460-00-4	0.2	%	84.3	88.1	86.9	75.2	

Analytical Results Descriptive Results

Sub-Matrix: SOIL

Method: Compound	Client sample ID - Client sampling date / time	Analytical Results
EA200: AS 4964 - 2004 Identificatio		
	BH-1A - [30-Jun-2016]	MCA house store 2
EA200: Description	•	Mid brown clay soil.
EA200: Description	BH-2A - [30-Jun-2016]	Mid brown clay soil.
EA200: Description	TP-1A - [30-Jun-2016]	Dark grey clay soil with slag debris.
EA200: Description	TP-1B - [30-Jun-2016]	Mid brown clay soil.
EA200: Description	TP-2A - [30-Jun-2016]	Dark grey clay soil with slag debris.
EA200: Description	TP-3A - [30-Jun-2016]	Dark grey clay soil with slag debris.
EA200: Description	TP-4A - [30-Jun-2016]	Mid brown clay soil.
EA200: Description	TP-5A - [30-Jun-2016]	Dark grey - brown clay soil with slag grains.
EA200: Description	TP-6A - [30-Jun-2016]	Mid brown clay soil.
EA200: Description	TP-7A - [30-Jun-2016]	Mid brown clay soil.
EA200: Description	TP-8A - [30-Jun-2016]	Mid brown clay soil.
EA200: Description	TP-9A - [30-Jun-2016]	Mid brown clay soil.
EA200: Description	TP-10A - [30-Jun-2016]	Mid brown clay soil.
EA200: Description	DUP-01 - [30-Jun-2016]	Mid brown clay soil.
EA200: Description	SHED C-1 - [30-Jun-2016]	Mid brown sandy soil
EA200: Description	HOUSE C-1 - [30-Jun-2016]	Mid brown sandy soil

Page : 19 of 19 Work Order : ES1614401

Client : EARTH2WATER PTY LTD

Project : ---

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP066S: PCB Surrogate			
Decachlorobiphenyl	2051-24-3	39	149
EP068S: Organochlorine Pesticide Surrogate			
Dibromo-DDE	21655-73-2	49	147
EP068T: Organophosphorus Pesticide Surrogate			
DEF	78-48-8	35	143
EP075(SIM)S: Phenolic Compound Surrogates			
Phenol-d6	13127-88-3	63	123
2-Chlorophenol-D4	93951-73-6	66	122
2.4.6-Tribromophenol	118-79-6	40	138
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	70	122
Anthracene-d10	1719-06-8	66	128
4-Terphenyl-d14	1718-51-0	65	129
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	73	133
Toluene-D8	2037-26-5	74	132
4-Bromofluorobenzene	460-00-4	72	130

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES1614401** Page : 1 of 7

Client : EARTH2WATER PTY LTD Laboratory : Environmental Division Sydney

 Contact
 : MR DINO PARISOTTO
 Telephone
 : +61-2-8784 8555

 Project
 : --- Date Samples Received
 : 01-Jul-2016

Site : KMC HOUSE GWORKS Issue Date : 08-Jul-2016

Sampler : DINO PARISOTTO No. of samples received : 21
Order number : E2W-247 No. of samples analysed : 19

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- Surrogate recovery outliers exist for all regular sample matrices please see following pages for full details.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 7

Work Order : ES1614401

Client : EARTH2WATER PTY LTD

Project : ---

Sub-Matrix: SOIL

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Samples Submitted							
EP080S: TPH(V)/BTEX Surrogates	ES1614401-010	TP-5A	4-Bromofluorobenzene	460-00-4	71.9 %	72-130 %	Recovery less than lower data quality
							objective

Outliers: Frequency of Quality Control Samples

Matrix: SOIL

Quality Control Sample Type	Count Rate (%) Quality		: (%)	Quality Control Specification	
Method	QC	Regular	Actual	Expected	
Matrix Spikes (MS)					
Total Metals by ICP-AES	1	21	4.76	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: **SOIL**Evaluation: **×** = Holding time breach; ✓ = Within holding time.

WIGHTAL GOIL					Lvaldation	. • - Holding time	bicacii, within	ii nolaling tili
Method			Extraction / Preparation			Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EA055: Moisture Content								
Soil Glass Jar - Unpreserved (EA055-10	03)							
BH-1A,	BH-2A,	30-Jun-2016				04-Jul-2016	14-Jul-2016	✓
TP-1A,	TP-1B,							
TP-2A,	TP-2B,							
TP-3A,	TP-4A,							
TP-5A,	TP-5B,							
TP-6A,	TP-7A,							
TP-8A,	TP-8B,							
TP-9A,	TP-10A,							
DUP-01								
Soil Glass Jar - Unpreserved (EA055-10	03)							
SHED C-1,	HOUSE C-1	30-Jun-2016				05-Jul-2016	14-Jul-2016	✓

Page : 3 of 7
Work Order : ES1614401

Client : EARTH2WATER PTY LTD

Project : ---

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time.	
Method		Sample Date	Ex	traction / Preparation		Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EA200: AS 4964 - 2004 Identification of Asbestos in S	oils								
Snap Lock Bag - Subsampled by ALS (EA200)									
TP-1B		30-Jun-2016				05-Jul-2016	27-Dec-2016	✓	
Snap Lock Bag: Separate bag received (EA200)	Bulga	20 1 2040				05 1 0040	07 Dec 2010		
BH-1A,	BH-2A,	30-Jun-2016				05-Jul-2016	27-Dec-2016	✓	
TP-1A,	TP-2A,								
TP-3A,	TP-4A,								
TP-5A,	TP-6A,								
TP-7A,	TP-8A,								
TP-9A,	TP-10A,								
DUP-01									
Snap Lock Bag: Separate bag received (EA200)									
SHED C-1,	HOUSE C-1	30-Jun-2016				06-Jul-2016	27-Dec-2016	✓	
EG005T: Total Metals by ICP-AES									
Soil Glass Jar - Unpreserved (EG005T)									
BH-1A,	BH-2A,	30-Jun-2016	05-Jul-2016	27-Dec-2016	✓	06-Jul-2016	27-Dec-2016	✓	
TP-1A,	TP-2A,								
TP-3A,	TP-4A,								
TP-5A,	TP-6A,								
TP-8A,	TP-10A,								
DUP-01,	SHED C-1,								
HOUSE C-1									
EG035T: Total Recoverable Mercury by FIMS									
Soil Glass Jar - Unpreserved (EG035T)									
BH-1A,	BH-2A,	30-Jun-2016	05-Jul-2016	28-Jul-2016	✓	06-Jul-2016	28-Jul-2016	✓	
TP-1A,	TP-2A,								
TP-3A,	TP-4A,								
TP-5A,	TP-6A,								
TP-8A,	TP-10A,								
DUP-01,	SHED C-1,								
HOUSE C-1	J. 1 1,								
EK026SF: Total CN by Segmented Flow Analyser									
Soil Glass Jar - Unpreserved (EK026SF)		T T							
BH-1A,	BH-2A,	30-Jun-2016	04-Jul-2016	14-Jul-2016	1	05-Jul-2016	18-Jul-2016	✓	
TP-1A,	TP-2A,							·	
TP-4A,	TP-5A,								
TP-10A,	DUP-01								
EP066: Polychlorinated Biphenyls (PCB)									
Soil Glass Jar - Unpreserved (EP066)									
TP-3A,	TP-6A,	30-Jun-2016	04-Jul-2016	14-Jul-2016	1	05-Jul-2016	13-Aug-2016	✓	
TP-8A	•				_		_		

Page : 4 of 7
Work Order : ES1614401

Client : EARTH2WATER PTY LTD

Project : ---

Matrix: SOIL						Evaluation	: x = Holding time	breach ; ✓ = Within	n holding time.
Method		Samp	nple Date	Ext	raction / Preparation			Analysis	
Container / Client Sample ID(s)				Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP068A: Organochlorine Pesticides (OC)									
Soil Glass Jar - Unpreserved (EP068)									
TP-3A,	TP-6A,	30-Ju	Jun-2016	04-Jul-2016	14-Jul-2016	✓	05-Jul-2016	13-Aug-2016	✓
TP-8A									
EP080/071: Total Petroleum Hydrocarbons									
Soil Glass Jar - Unpreserved (EP071)									
BH-1A,	BH-2A,	30-Ju	Jun-2016	04-Jul-2016	14-Jul-2016	✓	05-Jul-2016	13-Aug-2016	✓
TP-1A,	TP-2A,								
TP-2B,	TP-3A,								
TP-4A,	TP-5A,								
TP-5B,	TP-6A,								
TP-8A,	TP-8B,								
TP-10A,	DUP-01								
Soil Glass Jar - Unpreserved (EP071)									
SHED C-1,	HOUSE C-1	30-Ju	Jun-2016	05-Jul-2016	14-Jul-2016	✓	06-Jul-2016	14-Aug-2016	✓
EP075(SIM)B: Polynuclear Aromatic Hydrocarbo	ons								
Soil Glass Jar - Unpreserved (EP075(SIM))					44 1-1-0040			10 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
BH-1A,	BH-2A,	30-Ju	Jun-2016	04-Jul-2016	14-Jul-2016	✓	05-Jul-2016	13-Aug-2016	✓
TP-1A,	TP-1B,								
TP-2A,	TP-3A,								
TP-4A,	TP-5A,								
TP-6A,	TP-7A,								
TP-8A,	TP-9A,								
TP-10A,	DUP-01								
Soil Glass Jar - Unpreserved (EP075(SIM))									
SHED C-1,	HOUSE C-1	30-Ju	Jun-2016	05-Jul-2016	14-Jul-2016	√	06-Jul-2016	14-Aug-2016	✓
EP080/071: Total Petroleum Hydrocarbons									
Soil Glass Jar - Unpreserved (EP080)									
BH-1A,	BH-2A,	30-Ju	Jun-2016	04-Jul-2016	14-Jul-2016	✓	07-Jul-2016	14-Jul-2016	✓
TP-1A,	TP-2A,								
TP-2B,	TP-3A,								
TP-4A,	TP-5A,								
TP-5B,	TP-6A,								
TP-8A,	TP-8B,								
TP-10A,	DUP-01								
Soil Glass Jar - Unpreserved (EP080)									
SHED C-1,	HOUSE C-1	30-Ju	Jun-2016	05-Jul-2016	14-Jul-2016	✓	05-Jul-2016	14-Jul-2016	✓

Page : 5 of 7

Work Order : ES1614401

Client : EARTH2WATER PTY LTD

Project : --

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

 Matrix: SOIL
 Evaluation: x = Quality Control frequency not within specification; √ = Quality Control frequency within specification.

 Quality Control Sample Type
 Count
 Rate (%)
 Quality Control Specification

Analysis Method O.C. Resulter Resulter Actual Excepted Evaluation	Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Model	Analytical Methods	Method	QC	Regular	Actual	T	Evaluation	
PALPPRINCING (SIM)	Laboratory Duplicates (DUP)							
PestIndex by GCMS	Moisture Content	EA055-103	6	58	10.34	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychionnated Biphenyls (PCB)	PAH/Phenols (SIM)	EP075(SIM)	4	25	16.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Organide by Segmented Flow Analyser	Pesticides by GCMS	EP068	1	3	33.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FINS	Polychlorinated Biphenyls (PCB)	EP066	1	3	33.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	Total Cyanide by Segmented Flow Analyser	EK026SF	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	Total Mercury by FIMS	EG035T	3	21	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	Total Metals by ICP-AES	EG005T	3	21	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)	TRH - Semivolatile Fraction	EP071	4	25	16.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	TRH Volatiles/BTEX	EP080	4	32	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	Laboratory Control Samples (LCS)							
Polychlorinated Biphenyls (PCB)	PAH/Phenols (SIM)	EP075(SIM)	2	25	8.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser EK026SF 2 20 10.00 10.00 ✓ NEPM 2013 B3 & ALS QC Standard Total Metarby by FIMS E6035T 2 21 9.52 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Total Metarby by FIMS E6035T 2 21 9.52 5.00 ✓ NEPM 2013 B3 & ALS QC Standard TRH - Semivolatile Fraction EP071 2 25 8.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard TRH - Semivolatile Fraction EP080 2 32 6.25 5.00 ✓ NEPM 2013 B3 & ALS QC Standard NEPM 2013 B3 & AL	Pesticides by GCMS	EP068	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	Polychlorinated Biphenyls (PCB)	EP066	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	Total Cyanide by Segmented Flow Analyser	EK026SF	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	Total Mercury by FIMS	EG035T	2	21	9.52	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB) EP080 2 32 6.25 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Method Blanks (MB) PAH/Phenols (SIM) EP075(SIM) 2 25 8.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Pesticides by GCMS EP068 1 3 33.33 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Polychlorinated Biphenyls (PCB) EP066 1 3 33.33 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Total Cyanide by Segmented Flow Analyser EK026SF 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Total Metals by ICP-AES EG035T 2 21 9.52 5.00 ✓ NEPM 2013 B3 & ALS QC Standard TRH - Semivolatile Fraction EP071 2 25 8.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard TRH Volatiles/BTEX EP080 2 32 6.25 5.00 ✓ NEPM 2013 B3 & ALS QC Standard TRH Volatiles/BTEX EP080 2 32 6.25 5.00 ✓ NEPM 2013 B3 & ALS QC Standard	Total Metals by ICP-AES	EG005T	2	21	9.52	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB) PAH/Phenols (SIM) EP075(SIM) 2 25 8.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Pesticides by GCMS EP068 1 3 33.33 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Polychlorinated Biphenyls (PCB) EP066 1 3 33.33 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Total Cyanide by Segmented Flow Analyser EK026SF 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Total Metroury by FIMS EG035T 2 21 9.52 5.00 ✓ NEPM 2013 B3 & ALS QC Standard TRH - Semivolatile Fraction EF0605T 2 21 9.52 5.00 ✓ NEPM 2013 B3 & ALS QC Standard TRH - Semivolatile Fraction EF071 2 25 8.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard TRH - Semivolatile Fraction EP075(SIM) 2 25 8.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard TRH - Semivolat	TRH - Semivolatile Fraction	EP071	2	25	8.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM) Pesticides by GCMS Pervision Remains and Pervision Remains P	TRH Volatiles/BTEX	EP080	2	32	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS EP068 1 3 33.33 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Polychlorinated Biphenyls (PCB) EP066 1 3 33.33 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Total Cyanide by Segmented Flow Analyser EK026SF 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Total Mercury by FIMS EG035T 2 21 9.52 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Total Metals by ICP-AES EG005T 2 21 9.52 5.00 ✓ NEPM 2013 B3 & ALS QC Standard TRH - Semivolatile Fraction EP071 2 25 8.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard TRH Volatiles/BTEX EP080 2 32 6.25 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Matrix Spikes (MS) PAH/Phenols (SIM) EP075(SIM) 2 25 8.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Pesticides by GCMS EP068	Method Blanks (MB)							
Polychlorinated Biphenyls (PCB)	PAH/Phenols (SIM)	EP075(SIM)	2	25	8.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser EK026SF 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Total Mercury by FIMS EG035T 2 21 9.52 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Total Metals by ICP-AES EG005T 2 21 9.52 5.00 ✓ NEPM 2013 B3 & ALS QC Standard TRH - Semivolatile Fraction EP071 2 25 8.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard TRH Volatiles/BTEX EP080 2 32 6.25 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Matrix Spikes (MS) Volatiles/BTEX EP075(SIM) 2 25 8.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Matrix Spikes (MS) PAH/Phenols (SIM) EP075(SIM) 2 25 8.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Pesticides by GCMS EP086 1 3 33.33 5.00 ✓ NEPM 2013 B3 & ALS QC Standard	Pesticides by GCMS	EP068	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS EG035T 2 21 9.52 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Total Metals by ICP-AES EG005T 2 21 9.52 5.00 ✓ NEPM 2013 B3 & ALS QC Standard RH - Semivolatile Fraction EP071 EP080	Polychlorinated Biphenyls (PCB)	EP066	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES EG005T 2 21 9.52 5.00 ✓ NEPM 2013 B3 & ALS QC Standard REPO71 2 25 8.00 FERM volatiles/BTEX EG005T EP080	Total Cyanide by Segmented Flow Analyser	EK026SF	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction EP071 2 25 8.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard TRH Volatiles/BTEX EP080 2 32 6.25 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Matrix Spikes (MS) PAH/Phenols (SIM) EP075(SIM) 2 25 8.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Pesticides by GCMS EP068 1 3 33.33 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Polychlorinated Biphenyls (PCB) EP066 1 3 33.33 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Total Cyanide by Segmented Flow Analyser EK026SF 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Total Mercury by FIMS EG035T 2 21 9.52 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Total Metals by ICP-AES EG005T 1 21 4.76 5.00 ✓ NEPM 2013 B3 & ALS QC Standard TRH - Semivolatile Fraction EP071 2 </td <td>Total Mercury by FIMS</td> <td>EG035T</td> <td>2</td> <td>21</td> <td>9.52</td> <td>5.00</td> <td>✓</td> <td>NEPM 2013 B3 & ALS QC Standard</td>	Total Mercury by FIMS	EG035T	2	21	9.52	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX EP080 2 32 6.25 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Matrix Spikes (MS) PAH/Phenols (SIM) EP075(SIM) 2 25 8.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Pesticides by GCMS EP068 1 3 33.33 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Polychlorinated Biphenyls (PCB) EP066 1 3 33.33 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Total Cyanide by Segmented Flow Analyser EK026SF 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Total Mercury by FIMS EG035T 2 21 9.52 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Total Metals by ICP-AES EG005T 1 21 4.76 5.00 ✓ NEPM 2013 B3 & ALS QC Standard TRH - Semivolatile Fraction EP071 2 25 8.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard	Total Metals by ICP-AES	EG005T	2	21	9.52	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS) PAH/Phenols (SIM) EP075(SIM) 2 25 8.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Pesticides by GCMS EP068 1 3 33.33 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Polychlorinated Biphenyls (PCB) EP066 1 3 33.33 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Total Cyanide by Segmented Flow Analyser EK026SF 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Total Mercury by FIMS EG035T 2 21 9.52 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Total Metals by ICP-AES EG005T 1 21 4.76 5.00 ✓ NEPM 2013 B3 & ALS QC Standard TRH - Semivolatile Fraction EP071 2 25 8.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard	TRH - Semivolatile Fraction	EP071	2	25	8.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM) EP075(SIM) 2 25 8.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Pesticides by GCMS EP068 1 3 33.33 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Polychlorinated Biphenyls (PCB) EP066 1 3 33.33 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Total Cyanide by Segmented Flow Analyser EK026SF 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Total Mercury by FIMS EG035T 2 21 9.52 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Total Metals by ICP-AES EG005T 1 21 4.76 5.00 ✓ NEPM 2013 B3 & ALS QC Standard TRH - Semivolatile Fraction EP071 2 25 8.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard	TRH Volatiles/BTEX	EP080	2	32	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM) EP075(SIM) 2 25 8.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Pesticides by GCMS EP068 1 3 33.33 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Polychlorinated Biphenyls (PCB) EP066 1 3 33.33 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Total Cyanide by Segmented Flow Analyser EK026SF 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Total Mercury by FIMS EG035T 2 21 9.52 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Total Metals by ICP-AES EG005T 1 21 4.76 5.00 ✓ NEPM 2013 B3 & ALS QC Standard TRH - Semivolatile Fraction EP071 2 25 8.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard	Matrix Spikes (MS)							
Polychlorinated Biphenyls (PCB) EP066 1 3 33.33 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Total Cyanide by Segmented Flow Analyser EK026SF 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Total Mercury by FIMS EG035T 2 21 9.52 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Total Metals by ICP-AES EG005T 1 21 4.76 5.00 ★ NEPM 2013 B3 & ALS QC Standard TRH - Semivolatile Fraction EP071 2 25 8.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard	PAH/Phenols (SIM)	EP075(SIM)	2	25	8.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser EK026SF 1 20 5.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Total Mercury by FIMS EG035T 2 21 9.52 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Total Metals by ICP-AES EG005T 1 21 4.76 5.00 ★ NEPM 2013 B3 & ALS QC Standard TRH - Semivolatile Fraction EP071 2 25 8.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard	Pesticides by GCMS	EP068	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS EG035T 2 21 9.52 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Total Metals by ICP-AES EG005T 1 21 4.76 5.00 ★ NEPM 2013 B3 & ALS QC Standard TRH - Semivolatile Fraction EP071 2 25 8.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard	Polychlorinated Biphenyls (PCB)	EP066	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES EG005T 1 21 4.76 5.00 ★ NEPM 2013 B3 & ALS QC Standard TRH - Semivolatile Fraction EP071 2 25 8.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard	Total Cyanide by Segmented Flow Analyser	EK026SF	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction EP071 2 25 8.00 5.00 ✓ NEPM 2013 B3 & ALS QC Standard	Total Mercury by FIMS	EG035T	2	21	9.52	5.00	✓	NEPM 2013 B3 & ALS QC Standard
	Total Metals by ICP-AES	EG005T	1	21	4.76	5.00	æ	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX EP080 2 32 6.25 5.00 V NEPM 2013 B3 & ALS QC Standard	TRH - Semivolatile Fraction	EP071	2	25	8.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
□ · · · · · · · · · · · · · · · · · · ·	TRH Volatiles/BTEX	EP080	2	32	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 6 of 7

Work Order : ES1614401

Client : EARTH2WATER PTY LTD

Project : ---

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055-103	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Asbestos Identification in Soils	EA200	SOIL	AS 4964 - 2004 Method for the qualitative identification of asbestos in bulk samples
			Analysis by Polarised Light Microscopy including dispersion staining
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate
			acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic
			spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix
			matched standards. This method is compliant with NEPM (2013) Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS)
			FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an
			appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then
			purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This
			method is compliant with NEPM (2013) Schedule B(3)
Total Cyanide by Segmented Flow	EK026SF	SOIL	In house: Referenced to APHA 4500-CN C / ASTM D7511. Caustic leachates of soil samples are introduced into
Analyser			an automated segmented flow analyser. Complex bound cyanide is decomposed in a continuously flowing
			stream, at a pH of 3.8, by the effect of UV light. A UV-B lamp (312 nm) and a decomposition spiral of borosilicate
			glass are used to filter out UV light with a wavelength of less than 290 nm thus preventing the conversion of
			thiocyanate into cyanide. The hydrogen cyanide present at a pH of 3.8 is separated by gas dialysis. The hydrogen
			cyanide is then determined photometrically, based on the reaction of cyanide with chloramine-T to form
			cyanogen chloride. This then reacts with 4-pyridine carboxylic acid and 1,3-dimethylbarbituric acid to give a red
		0.011	colour which is measured at 600 nm. This method is compliant with NEPM (2013) Schedule B(3)
Polychlorinated Biphenyls (PCB)	EP066	SOIL	In house: Referenced to USEPA SW 846 - 8270D Extracts are analysed by Capillary GC/MS and quantification is
			by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013)
D # 11 1 00110		0011	Schedule B(3) (Method 504)
Pesticides by GCMS	EP068	SOIL	In house: Referenced to USEPA SW 846 - 8270D Extracts are analysed by Capillary GC/MS and quantification is
			by comparison against an established 5 point calibration curve. This technique is compliant with NEPM (2013)
TDII. Ocashadatik Facation	ED074	0011	Schedule B(3) (Method 504,505)
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015A Sample extracts are analysed by Capillary GC/FID and
DALL/Dhanala (CIM)	ED075(0114)	0011	quantified against alkane standards over the range C10 - C40.
PAH/Phenols (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270D Extracts are analysed by Capillary GC/MS in Selective Ion
			Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is
TRH Volatiles/BTEX	ED000	SOIL	compliant with NEPM (2013) Schedule B(3) (Method 502 and 507)
INT VOIAUIES/DIEA	EP080	SUIL	In house: Referenced to USEPA SW 846 - 8260B Extracts are analysed by Purge and Trap, Capillary GC/MS.
			Quantification is by comparison against an established 5 point calibration curve.
Preparation Methods	Method	Matrix	Method Descriptions
NaOH leach for CN in Soils	CN-PR	SOIL	In house: APHA 4500 CN. Samples are extracted by end-over-end tumbling with NaOH.

Page : 7 of 7
Work Order : ES1614401

Client : EARTH2WATER PTY LTD

Project : ---

Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (2013) Schedule B(3) (Method 202)
Methanolic Extraction of Soils for Purge and Trap	* ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.

CERTIFICATE OF ANALYSIS

Work Order : ES1614998

: EARTH2WATER PTY LTD

Contact : MR DINO PARISOTTO

Address : PO BOX 189

JAMBEROO NSW, AUSTRALIA 2533

Telephone : +61 4236 1334

Project : ----

Client

Order number : E2W-247

C-O-C number : ----

Sampler : DINO PARISOTTO
Site : KMC HOUSE GWORKS

Quote number : ---No. of samples received : 7
No. of samples analysed : 7

Page : 1 of 8

Laboratory : Environmental Division Sydney

Contact :

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61-2-8784 8555

Date Samples Received : 11-Jul-2016 13:05

Date Analysis Commenced : 12-Jul-2016

Issue Date : 15-Jul-2016 14:06

NATA Accredited Laboratory 825
Accredited for compliance with
ISO/IEC 17025.

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Celine ConceicaoSenior SpectroscopistSydney Inorganics, Smithfield, NSWEdwandy FadjarOrganic CoordinatorSydney Organics, Smithfield, NSW

Page : 2 of 8
Work Order : ES1614998

Client : EARTH2WATER PTY LTD

Project : ---

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

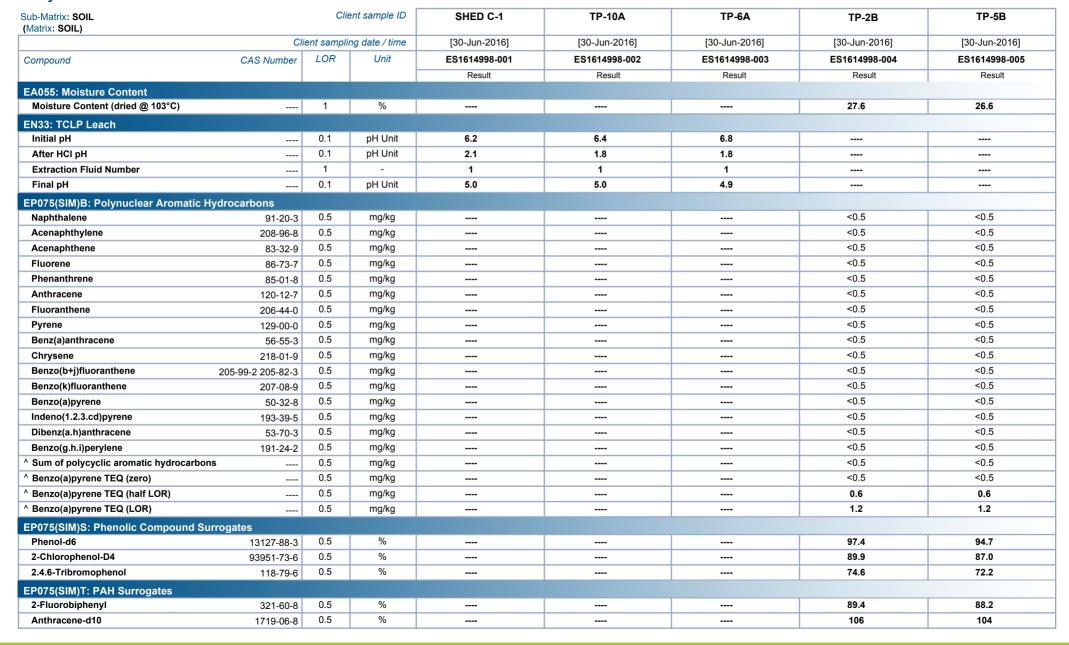
Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

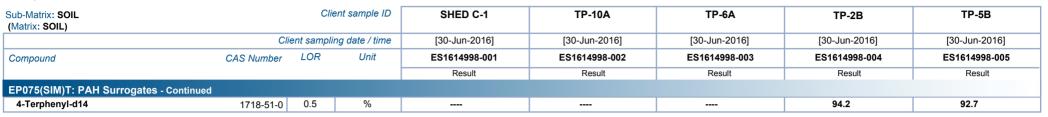

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.

Page : 3 of 8
Work Order : ES1614998

Client : EARTH2WATER PTY LTD

Project : ---



Page : 4 of 8 Work Order : ES1614998

Client : EARTH2WATER PTY LTD

Project : ---

Page : 5 of 8
Work Order : ES1614998

Client : EARTH2WATER PTY LTD

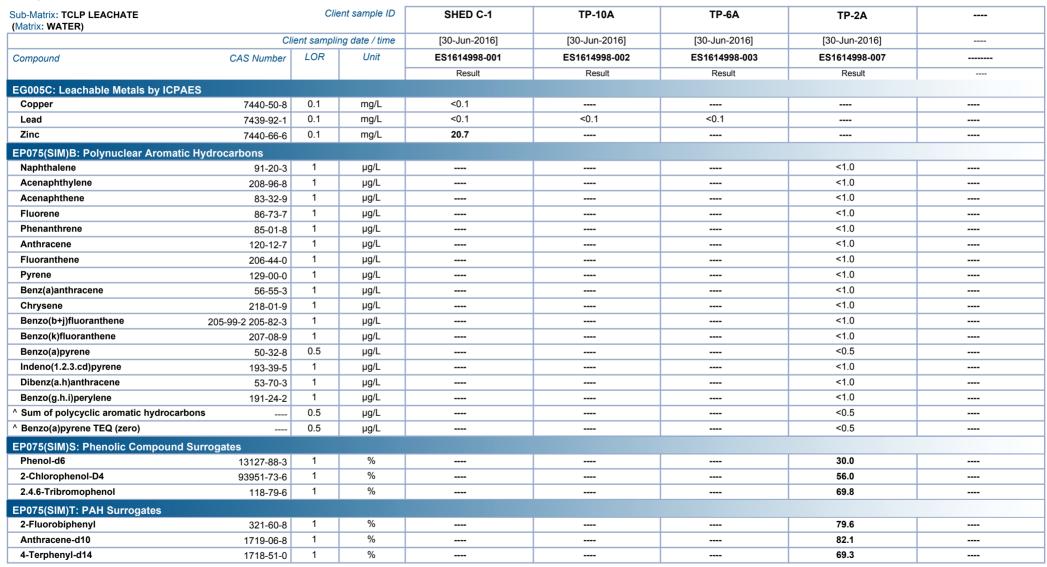
Project : ---

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP-10B	TP-2A	 	
	Cl	ient sampli	ng date / time	[30-Jun-2016]	[30-Jun-2016]	 	
Compound	CAS Number	LOR	Unit	ES1614998-006	ES1614998-007	 	
				Result	Result	 	
EA055: Moisture Content							
Moisture Content (dried @ 103°C)		1	%	26.0		 	
EN33: TCLP Leach							
Initial pH		0.1	pH Unit		7.0	 	
After HCI pH		0.1	pH Unit		1.8	 	
Extraction Fluid Number		1	-		1	 	
Final pH		0.1	pH Unit		5.0	 	
EP075(SIM)B: Polynuclear Aromatic	Hydrocarbons						
Naphthalene	91-20-3	0.5	mg/kg	<0.5		 	
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5		 	
Acenaphthene	83-32-9	0.5	mg/kg	<0.5		 	
Fluorene	86-73-7	0.5	mg/kg	<0.5		 	
Phenanthrene	85-01-8	0.5	mg/kg	<0.5		 	
Anthracene	120-12-7	0.5	mg/kg	<0.5		 	
Fluoranthene	206-44-0	0.5	mg/kg	<0.5		 	
Pyrene	129-00-0	0.5	mg/kg	<0.5		 	
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5		 	
Chrysene	218-01-9	0.5	mg/kg	<0.5		 	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5		 	
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5		 	
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5		 	
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5		 	
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5		 	
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5		 	
Sum of polycyclic aromatic hydrocarbo	ons	0.5	mg/kg	<0.5		 	
Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5		 	
Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6		 	
Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2		 	
EP075(SIM)S: Phenolic Compound S	urrogates						
Phenol-d6	13127-88-3	0.5	%	100		 	
2-Chlorophenol-D4	93951-73-6	0.5	%	88.6		 	
2.4.6-Tribromophenol	118-79-6	0.5	%	70.8		 	
EP075(SIM)T: PAH Surrogates							
2-Fluorobiphenyl	321-60-8	0.5	%	89.5		 	
Anthracene-d10	1719-06-8	0.5	%	102		 	

Page : 6 of 8
Work Order : ES1614998

Client : EARTH2WATER PTY LTD

Project : ---



Page : 7 of 8 Work Order : ES1614998

Client : EARTH2WATER PTY LTD

Project · ---

Page : 8 of 8 Work Order : ES1614998

Client : EARTH2WATER PTY LTD

Project : ---

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery Limits (%)			
Compound	CAS Number	Low	High		
EP075(SIM)S: Phenolic Compound Surrogates					
Phenol-d6	13127-88-3	63	123		
2-Chlorophenol-D4	93951-73-6	66	122		
2.4.6-Tribromophenol	118-79-6	40	138		
EP075(SIM)T: PAH Surrogates					
2-Fluorobiphenyl	321-60-8	70	122		
Anthracene-d10	1719-06-8	66	128		
4-Terphenyl-d14	1718-51-0	65	129		

Sub-Matrix: TCLP LEACHATE		Recovery	Limits (%)		
Compound	CAS Number	Low	High		
EP075(SIM)S: Phenolic Compound Surrogates					
PhenoI-d6	13127-88-3	10	44		
2-Chlorophenol-D4	93951-73-6	14	94		
2.4.6-Tribromophenol	118-79-6	17	125		
EP075(SIM)T: PAH Surrogates					
2-Fluorobiphenyl	321-60-8	20	104		
Anthracene-d10	1719-06-8	27	113		
4-Terphenyl-d14	1718-51-0	32	112		

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES1614998** Page : 1 of 5

Client : EARTH2WATER PTY LTD Laboratory : Environmental Division Sydney

 Contact
 : MR DINO PARISOTTO
 Telephone
 : +61-2-8784 8555

 Project
 : --- Date Samples Received
 : 11-Jul-2016

Site : KMC HOUSE GWORKS Issue Date : 11-Jul-2016

Sampler : DINO PARISOTTO No. of samples received : 7
Order number : E2W-247 No. of samples analysed : 7

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

• NO Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 5 Work Order : ES1614998

Client : EARTH2WATER PTY LTD

Project · ----

Outliers: Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
EG005C: Leachable Metals by ICPAES	ES1614998002	TP-10A	Zinc	7440-66-6	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.

Outliers: Frequency of Quality Control Samples

Matrix: WATER

Quality Control Sample Type	Count		Rate	: (%)	Quality Control Specification
Method	QC	Regular	ar Actual Expected		
Laboratory Duplicates (DUP)					
PAH/Phenols (GC/MS - SIM)	0	14	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)					
PAH/Phenols (GC/MS - SIM)	0	14	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: **SOIL**Evaluation: ▼ = Holding time breach; ✓ = Within holding time.

Matrixi COIL					Evaluation	. Holding time		ir nording time	
Method	nod			Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EA055: Moisture Content									
Soil Glass Jar - Unpreserved (EA055-103)									
TP-2B,	TP-5B,	30-Jun-2016				13-Jul-2016	14-Jul-2016	✓	
TP-10B									
EN33: TCLP Leach									
Non-Volatile Leach: 14 day HT(e.g. SV org	anics) (EN33a)								
TP-2A		30-Jun-2016	12-Jul-2016	14-Jul-2016	✓				
Non-Volatile Leach: 180 day HT (e.g. meta	ls ex.Hg) (EN33a)								
SHED C-1,	TP-10A,	30-Jun-2016	12-Jul-2016	27-Dec-2016	✓				
TP-6A									
EP075(SIM)B: Polynuclear Aromatic Hyd	rocarbons								
Soil Glass Jar - Unpreserved (EP075(SIM))								
TP-2B,	TP-5B,	30-Jun-2016	12-Jul-2016	14-Jul-2016	✓	13-Jul-2016	21-Aug-2016	✓	
TP-10B									

Matrix: WATER Evaluation: ▼ = Holding time breach; ✓ = Within holding time.

Page : 3 of 5 Work Order : ES1614998

Client : EARTH2WATER PTY LTD

Project : ----

Matrix: WATER				Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time.
Method		Extraction / Preparation		Analysis			
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG005C: Leachable Metals by ICPAES							
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG005C) SHED C-1, TP-10A, TP-6A	12-Jul-2016	13-Jul-2016	08-Jan-2017	✓	13-Jul-2016	08-Jan-2017	✓
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons							
Amber Glass Bottle - Unpreserved (EP075(SIM)) TP-2A	12-Jul-2016	13-Jul-2016	19-Jul-2016	✓	13-Jul-2016	22-Aug-2016	✓

Page : 4 of 5 Work Order : ES1614998

Client : EARTH2WATER PTY LTD

Project : ---

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification ; \checkmark = Quality Control frequency within specification
Quality Control Sample Type	ity Control Sample Type		Count		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055-103	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	2	12	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
PAH/Phenols (SIM)	EP075(SIM)	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
PAH/Phenols (SIM)	EP075(SIM)	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TCLP for Non & Semivolatile Analytes	EN33a	1	11	9.09	9.09	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
PAH/Phenols (SIM)	EP075(SIM)	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix: WATER				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification ; ✓ = Quality Control frequency within specificat
Quality Control Sample Type		Count		Rate (%)			Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
_aboratory Duplicates (DUP)							
eachable Metals by ICPAES	EG005C	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	14	0.00	10.00	3e	NEPM 2013 B3 & ALS QC Standard
aboratory Control Samples (LCS)							
eachable Metals by ICPAES	EG005C	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nethod Blanks (MB)							
eachable Metals by ICPAES	EG005C	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Matrix Spikes (MS) Leachable Metals by ICPAES	EG005C	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 5 of 5 Work Order : ES1614998

Client : EARTH2WATER PTY LTD

Project : --

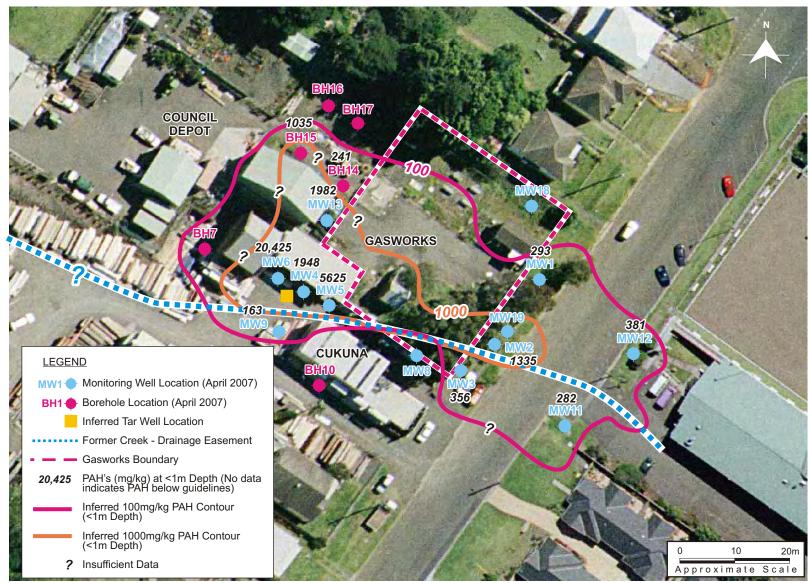
Brief Method Summaries


The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055-103	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Leachable Metals by ICPAES	EG005C	SOIL	In house: referenced to APHA 3120; USEPA SW 846 - 6010: The ICPAES technique ionises leachate sample atoms emitting a characteristic spectrum. This spectrum is then compared against matrix matched standards for quantification. This method is compliant with NEPM (2013) Schedule B(3)
PAH/Phenois (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270D Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 502 and 507)
Preparation Methods	Method	Matrix	Method Descriptions
Digestion for Total Recoverable Metals in TCLP Leachate	EN25C	SOIL	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM (2013) Schedule B(3)
TCLP for Non & Semivolatile Analytes	EN33a	SOIL	In house QWI-EN/33 referenced to USEPA SW846-1311: The TCLP procedure is designed to determine the mobility of both organic and inorganic analytes present in wastes. The standard TCLP leach is for non-volatile and Semivolatile test parameters.
Separatory Funnel Extraction of Liquids	ORG14	SOIL	In house: Referenced to USEPA SW 846 - 3510B 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using 60mL DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM (2013) Schedule B(3). ALS default excludes sediment which may be resident in the container.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.

Appendix D-E2W Previous Investigation (2007) Figures 1 to 5

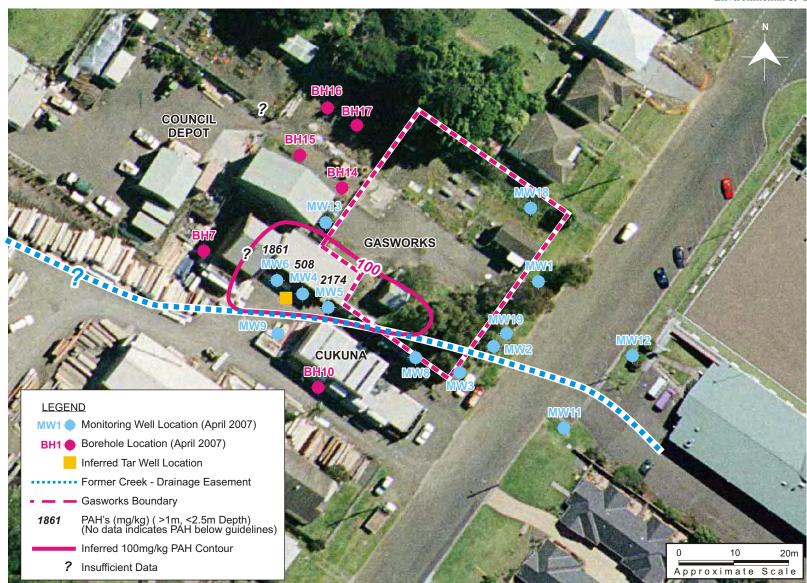
Source: Kiama Council


Date: 13 April 2007

SITE LAYOUT & SAMPLING LOCATIONS

KIAMA GASWORKS OFFSITE INVESTIGATION

Reference: E2W_084_01.cdr

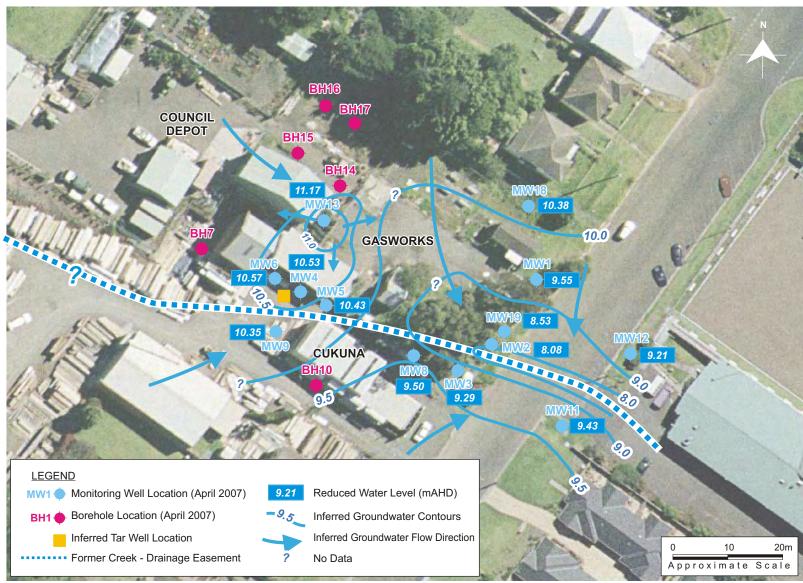

SITE LAYOUT & INFERRED PAH CONCENTRATIONS IN SHALLOW SOILS (<1m DEPTH)

Date: 28 April 2007

Source: Kiama Council

Figure 2 Reference: E2W 084 02.cdr

SITE LAYOUT & INFERRED PAH CONCENTRATIONS IN DEEP SOILS (>1m & <2.5m DEPTH)

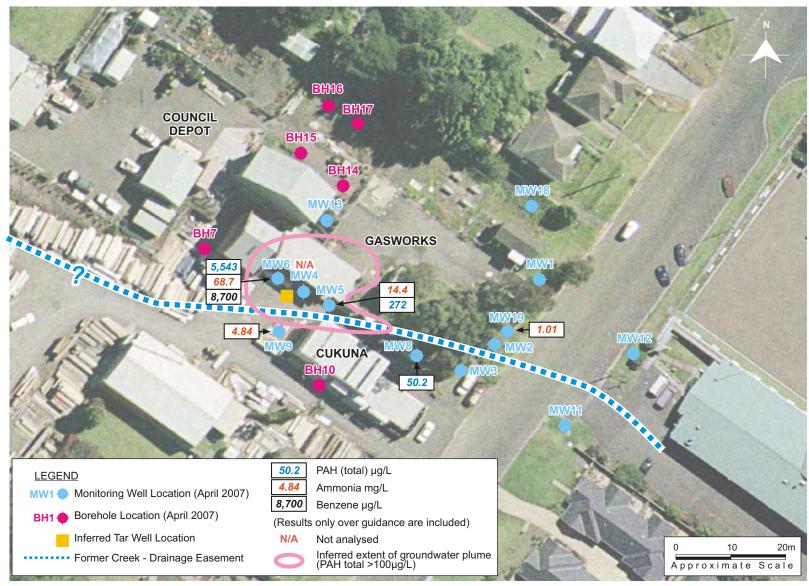

Date: 28 April 2007

Source: Kiama Council

KIAMA GASWORKS OFFSITE INVESTIGATION

Reference: E2W 084 03.cdr

SITE LAYOUT & INFERRED GROUNDWATER FLOW REGIME (18 April 2007)


Date: 22 June 2007

Source: Kiama Council

Reference: E2W 084 04.cdr

KIAMA GASWORKS OFFSITE INVESTIGATION

Source: Kiama Council

Date: 22 June 2007

SITE LAYOUT & GROUNDWATER LABORATORY RESULTS (18 April 2007)

KIAMA GASWORKS OFFSITE INVESTIGATION

Reference: E2W 084 05.cdr

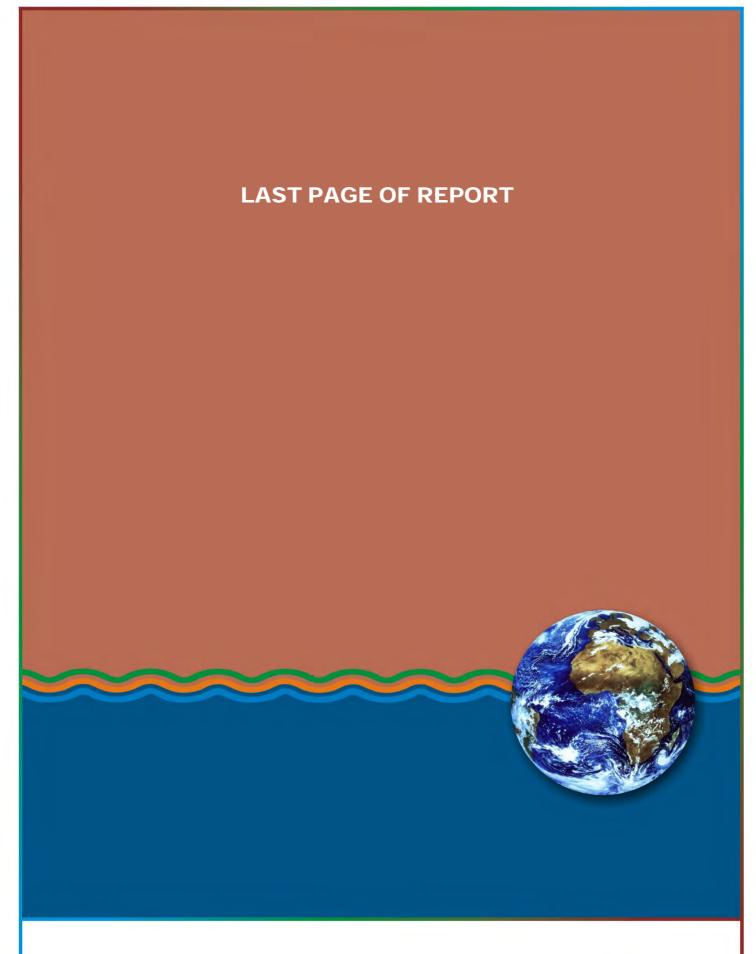
Appendix E- Data Quality Objectives

The data quality objectives (DQOs) ensure that the data obtained is sufficient to make decisions regarding the site. A summary of the DQO is provided in Table E-1 (below).

Table E-1 Data Quality Objectives

Objective	Considerations	How it was met
Step 1: State the problem	Contamination status of soil	Stage 2 Preliminary contamination assessment
	conditions, remediation is	(2016).
	required to facilitate land use	A Stage 3 assessment is recommended after
	change: change of landuse from	demolishing works, removal of transpiration
	commercial/residential to	beds, impacted soils, and to assess data gaps
	residential.	(under foundations) and any asbestos impact
		associated with site clearing.
Step 2: Identify the	Do the concentrations of	Stage 2 investigation.
decision	contaminants related to legacy	Asbestos assessment is recommended after
	gasworks materials/fill exceed	buildings (containing asbestos) are demolished
	the adopted soil criteria for	(stage 3 assessment).
	beneficial re-use or	Any remediation to be carried out to the extent
	residential/commercial use of the	practical (e.g. latent conditions or after building
	site?	works). Any control measures to be addressed
	Can soil exceeding the adopted	following site demolition works.
	criteria be feasibly be removed	
	offsite or remediated?	
Step 3: Identify inputs to	Investigation carried out based	Areas and Contaminants of concern were
decision	on the contaminants of concern	identified during previous works (E2W 2007) at
	(TPH, BTEX, PAHs, cyanide,	the neighbouring gas works.
	metals, asbestos) identified from	Soil samples were analysed (TPH, BTEX, PAH,
	review of the site history and	heavy metals, PCB, Organochlorine pesticides-
	previous investigation results.	OCP, and asbestos fibres) to characterise
		potentially contaminated soil and remaining
	Contaminated media potentially	residual soil. Groundwater samples were not
	includes soil, and soil vapour.	collected.
	Groundwater unlikely to occur at	Contaminants of concern compared to adopted
	the site (>3m), due to bedrock at	criteria (NEPM 2013).
Step 4: Define the study	shallow depth The property boundary (104)	Site covers an area of approximately ~ 462 m2.
boundaries	Shoalhaven St, Kiama a small	The dimensions are ~14m by 33m.
boundaries	residential block, mostly fenced.	No testing inside the building (possible asbestos
	Offsite pollution exists at the	issues – recommend testing site after demolition
	neighbouring gasworks site.	works completed).
Step 5: Develop a	If soil is	Level of soil contamination identified (olfactory
decision rule	• contaminated it will be	evidence, high vapour levels) and classified
	excavated and stockpiled	(based on laboratory analyses/adopted criteria).
	onsite and transported to a	
	landfill.	Soil guidelines (including NEPM 2013) and
	• uncontaminated it is suitable	investigation levels used for assessment are
	for onsite or beneficial re-	detailed in the assessment guidelines sections.
	use (BRU)	
Step 6: Specify limits on	Sampling Errors	Minimise/eliminate sampling errors by ensuring
decision error	Sampling errors occur when the	sufficient samples are collected for each stage of
	sampling program does not	investigation.
	adequately represent site	
	conditions.	Minimise/eliminate measurement errors by
	Measurement Errors	ensuring QA/QC procedures for sampling
	Measurement errors occur	collection and laboratory analysis is carried out.
	during sample collection,	Destrict medical Park
	handling, preparation, analysis	Decision making limits set accordingly, and
	and data reduction.	Type I and Type II errors established.

	Decision-making & Null	
	Hypothesis	
	To enable the tolerable limits on	
	the probability of decision error,	
	a null hypothesis (H0) that the	
	stockpiled soil is	
	uncontaminated has been	
	adopted. The following	
	acceptable limits on decision	
	error will be used:	
	• Rejecting the null	
	hypothesis when it is true	
	(Type I error) – 20%	
	• Accepting the null	
	hypothesis when it is false	
	(Type II error) – 5%	
Step 7: Optimise the	Ensure resource-effective	Samples were collected to assess contamination
design for obtaining data	sampling and optimum manner	status on the site. Recommendations are
	for data collection during Stage	provided for further testing (Stage 3 after
	Stage 2 and Stage 3 (to	demolition works, remedial works such as
	commence after site demolition	transpiration beds, septic tanks, gasworks waste-
	works).	coke ash/slag, and impacted soils).


Appendix F- Limitations

Earth2Water Pty Ltd (E2W) has prepared this report for the use of Kiama Council in accordance with the standard terms and conditions of the consulting profession. This report should not be copied or distributed without written authorisation from E2W (Dino Parisotto).

The methodology adopted and sources of information used by E2W are outlined in this report. This report was prepared during June to August 2016 and is based on the information reviewed at the time of preparation. This report should be read in full. No responsibility is accepted for use of any part of this report in any other context or for any other purpose or by third parties.

The precision with which conditions are indicated depends largely on the frequency and method of sampling, and the uniformity of conditions as constrained by the project budget limitations. The behaviour of groundwater and some aspects of contaminants in soil and groundwater are complex. Our conclusions are based upon the analytical data collected and presented in this report, and also from our experience on similar sites.

Where conditions encountered at the site are subsequently found to differ significantly from those anticipated in this report, E2W should be notified of any such findings and be provided with an opportunity to review the recommendations of this report.

Thank you for the opportunity to work with Council.

Feedback is Welcomed at Earth2Water (dino@earth2water.com.au)

